
Journal of Applied Informatics and Computing (JAIC)

Vol.9, No.6, December 2025, pp. 3079~3086

e-ISSN: 2548-6861 3079

http://jurnal.polibatam.ac.id/index.php/JAIC

Identification of Source Code Plagiarism Using a Natural Language

Processing (NLP) Approach Based on Code Writing Style Analysis

Muhammad Ilham Akbar 1, Novita Kurnia Ningrum 2
 Teknik Informatika, Universitas Dian Nuswantoro

111202214109@mhs.dinus.ac.id 1, novita.kn@dsn.dinus.ac.id 2

Article Info ABSTRACT

Article history:

Received 2025-09-13

Revised 2025-11-11

Accepted 2025-11-15

 Source code plagiarism identificatio requires a system capable of identifying

semantic similarity rather than mere textual resemblance. This study utilized a

dataset of 1,000 source code files, which after cleaning resulted in 996 individual

code samples collected from GitHub repositories. The dataset included various

programming languages (Python, Java, JavaScript, TypeScript, C++), divided into

697 training data, 149 validation data, and 149 testing data. The model employed

was CodeBERT, configured with a hidden size of 768, 12 layers, and 12 attention

heads. CodeBERT generated vector embeddings for each code sample, which were

then projected by a Siamese Network to calculate cosine similarity between code

pairs. Testing used a threshold of 0.80 to classify plagiarism. The identification

results achieved an accuracy of 96.4%, precision of 95.2%, recall of 97.8%, F1-score

of 96.4%, and an error rate of 4.6%. The system produced similarity scores and status

labels of “plagiarism detected” or “not detected,” demonstrating the effectiveness of

the CodeBERT-based approach for adaptive and intelligent code similarity

identificatio.

Keyword:

Code Plagiarism,

CodeBert,

Siamese Network,

Deep Learning,

Source Code Plagiarism,

Identification.

This is an open access article under the CC–BY-SA license.

I. INTRODUCTION

Source code plagiarism is a serious issue within academic

environments, particularly in the fields of informatics and

computer science. Various studies have reported that this

unethical practice has become increasingly widespread in the

digital era, driven by the ease of access to online repositories

and the low awareness of academic integrity among students

[5], [15], [21]. Its impact is multidimensional: for students,

plagiarism hinders conceptual understanding and reduces

authentic programming competence; while for institutions,

the prevalence of such violations can undermine academic

credibility and erode public trust in the quality of graduates.

According to Dickey [23], “Plagiarism in CS education is

unfortunately common. Surveys of students have repeatedly

shown a significant majority admit to some form of code

copying or undue collaboration. For instance, in a large lower-

division CS course of 200–300 students, teaching staff

typically discovered 20–40 blatant cases of code plagiarism

each semester. These confirmed cases (around 10–15% of the

class) represent a lower bound, as instructors often focus only

on the most obvious instances and ignore cases with plausible

deniability. In other words, many subtle or well-disguised

code copying incidents go undetected or ignored under

current practices. Other studies confirm this lower bound,

with some as high as 75%. The true incidence of plagiarism

is thus suspected to be higher, posing a serious threat to the

fairness and educational validity of programming assessments

and CS degrees.”This quotation indicates that the level of

plagiarism in computer science education is considerably high

and often not fully detected, since most existing systems are

limited to identifying textual similarities. Therefore, code

plagiarism identificatio requires a more contextual and

semantic approach rather than merely comparing character-

or token-level similarities.

A number of methods have been developed to detect source

code similarity; however, each has its own limitations.

Traditional approaches such as Winnowing and TF-IDF with

Cosine Similarity [1], [2], [22] are capable of identifying

textual similarities but fail to capture the semantic and

functional meaning of programs [9]. These systems operate

only at the lexical level, making them easily deceived by

mailto:111202214109@mhs.dinus.ac.id
mailto:novita.kn@dsn.dinus.ac.id
https://creativecommons.org/licenses/by-sa/4.0/

 e-ISSN: 2548-6861

JAIC Vol. 9, No. 6, December 2025: 3079 – 3086

3080

syntactic modifications that do not alter the underlying

program logic [12], [14].Recent studies have shown that deep

learning–based approaches can overcome these limitations by

understanding the functional context and semantic

relationships between lines of code. Models such as the

Siamese Network have proven effective in comparing code

representations that convey similar meanings despite

differences in structure or writing style [3], [18]. Meanwhile,

pre-trained models such as CodeBERT are designed to

comprehend semantic representations across programming

languages, producing embeddings that are robust to variations

in syntax and enabling more accurate identificatio of code

similarity [4], [6], [11], [20].

This study identifies source code plagiarism using a deep

learning–based approach with a focus on analyzing

programming style (coding style). The dataset consists of

1,000 source code projects collected from GitHub

repositories, covering five major programming languages:

Python, Java, JavaScript, TypeScript, and C++. The data are

divided into 700 training samples, 150 validation samples,

and 150 testing samples to ensure result generalization.The

system process comprises four main stages: (1) code

collection and preprocessing, including the removal of

comments, license headers, and structural normalization; (2)

semantic representation using CodeBERT with a hidden size

of 768 and 12 attention heads; (3) mapping of the two

representations into a lower-dimensional vector space using a

Siamese Network architecture with contrastive loss; and (4)

calculation of similarity levels using cosine similarity

values.The system produces outputs in the form of a similarity

percentage between two code segments along with a status

label “plagiarism detected” or “no plagiarism detected.”

Experimental results demonstrate that this approach can

effectively measure semantic code similarity with high

accuracy and low error rates, while also reinforcing the

potential of programming style analysis as a unique digital

identity to support academic integrity.

In general, the identification system operates by uploading

two or more program code files, which then undergo a

preprocessing stage to remove comments, excessive spaces,

and irrelevant string literals, as well as to normalize variable

and function names to reduce lexical bias. Subsequently, the

cleaned code is tokenized using CodeBERT’s built-in

tokenizer. The feature extraction stage maps the tokens into

high-dimensional vector representations that capture both

syntactic and semantic information. The extracted vectors are

then processed by a Siamese Network to compute the

similarity level between code snippets, producing similarity

scores ranging from 0 to 1. The final stage presents the results

in the form of a similarity percentage along with a plagiarism

status label.

The objective of this study is to develop an NLP-based

source code plagiarism identification system that integrates

CodeBERT and a Siamese Network to identify code

similarity even when modifications are made to programming

style aspects such as variable renaming, comment insertion,

or syntactic reformatting. The system is designed to generate

embeddings that capture both syntactic and semantic

information, directly compare pairs of code snippets to obtain

similarity scores, and evaluate the effectiveness of the

proposed method on a multi-language programming dataset.

Accordingly, this research is expected to assist lecturers and

academic institutions in detecting indications of source code

plagiarism and upholding academic integrity within higher

education environments.

II. METHODS

This research is designed with a systematic workflow

consisting of several main stages, starting from data collection

and code preprocessing to feature extraction, model training,

and evaluation. Each stage plays a crucial role in establishing

a solid methodological foundation to ensure results that are

accurate, measurable, and reproducible.

Figure 1. Research workflow

To provide an overview of the research workflow, Figure

1 presents the flowchart of the proposed research

methodology. The diagram visually illustrates the

relationships between each stage, facilitating the reader’s

understanding of the entire process—from raw data collection

to the evaluation of the plagiarism identification model.

A. Data Collection and Preparation

The dataset was obtained from public GitHub repositories

using the GitHub API with token-based authentication. The

search focused on simple algorithms such as Fibonacci,

Greatest Common Divisor (GCD), Least Common Multiple

(LCM), calculator, and sorting algorithms, implemented in

five popular programming languages: Python, Java,

JavaScript, TypeScript, and C++.

Each retrieved file was centrally stored in the directory

/content/drive/MyDrive/Jurnal/dataseyrrts2. The total dataset

initially contained 1,000 source code files, each exhibiting

diverse structures and coding styles. However, after the data

cleaning process, 996 files remained.

For experimental purposes, code pairs were divided into

two categories:

• Plagiarized pairs — code pairs that share identical logic

or algorithms but differ in writing style, such as variable

renaming, indentation changes, or the addition of

comments.

JAIC e-ISSN: 2548-6861

Identification of Source Code Plagiarism Using a Natural Language Processing (NLP) Approach Based on Code Writing

Style Analysis (Muhammad Ilham Akbar 1, Novita Kurnia Ningrum)

3081

• Non-plagiarized pairs — code pairs with different

functions and logical structures, derived from non-

equivalent algorithm implementations.

The pairing process was conducted semi-manually,

considering algorithmic similarity and program logic

structure rather than mere character-level resemblance. This

process involved analyzing the functional context and

execution sequence of the programs to ensure that the

plagiarized pairs authentically represented conceptual

similarity, while the non-plagiarized pairs reflected clear

semantic differences.

TABLE I

DATASET INFORMATION

No Programming

Language

Start

Year

Updated

Year

Total

Files

1 Python 2020 2025 387

2 Typescript 2020 2025 239

3 Java 2020 2025 220

4 Javascript 2020 2025 143

5 C++ 2022 2024 10

 Total Files 1000

B. Pra-Pemrosesan Data

The preprocessing stage aimed to ensure format

consistency and reduce noise without removing distinctive

stylistic features of the source code. A light cleaning approach

was applied, consisting of the following steps.

1. Comment Removal

The first step was to remove comments from the code.

Comments were categorized into two types:

• Multi-line comments, such as /* ... */, """...""", or

'''...'''

• Single-line comments, such as // ..., # ..., or -- ...

Comments were removed because they serve only as

decorative explanations that do not affect the core logic of the

program. Moreover, comments can easily be manipulated to

disguise plagiarism without changing the execution flow.

By removing comments, the analysis focuses on executable

code, leading to more objective identification results.

2. License Header Removal

The second step was to remove license headers, which

typically appear at the beginning of source files—usually

within the first ten lines. These headers often contain

keywords such as copyright, license, MIT, Apache, or

GPL.License information was excluded because it is

irrelevant to a programmer’s coding style and often identical

across many projects, potentially creating false

similarities.By removing license headers, the system can

better focus on the unique stylistic aspects of each

programmer’s code.

TABLE II

BEFORE AND AFTER COMMENT REMOVAL

Before After

#==============

Copyright (c) 2024

License: MIT

import os

import sys # system library

'''

Fungsi untuk menghitung

faktorial

dengan metode rekursif

'''

def factorial(n): # fungsi utama

 if n == 0:

 return 1

 else:

 return n * factorial(n-1) #

rekursi

print(factorial(5)) # test

#==============

Copyright (c) 2024

License: MIT

import os

import sys # system

library

def factorial(n): #

fungsi utama

 if n == 0:

 return 1

 else:

 return n *

factorial(n-1) # rekursi

print(factorial(5)) #

test

TABLE III

BEFORE AND AFTER LICENSE HEADER REMOVAL

Before After

#==============

Copyright (c) 2024

License: MIT

import os

import sys # system library

'''

Fungsi untuk menghitung

faktorial

dengan metode rekursif

'''

def factorial(n): # fungsi utama

 if n == 0:

 return 1

 else:

 return n * factorial(n-1) #

rekursi

print(factorial(5)) # test

import os

import sys

def factorial(n):

 if n == 0:

 return 1

 else:

 return n *

factorial(n-1)

print(factorial(5))

3. Removal of Import/Include/Require/Using/Export

Statements

The next step was to remove lines containing external

library declarations, such as import, from, include, require,

using, and export. These lines do not contribute to the

program’s logical writing style but merely indicate

dependencies. Since import patterns tend to be highly

uniform, they were considered noise in the stylistic

analysis.By eliminating these statements, preprocessing

 e-ISSN: 2548-6861

JAIC Vol. 9, No. 6, December 2025: 3079 – 3086

3082

became more effective in highlighting features that truly

reflect the programmer’s unique coding style.

TABLE IV
BEFORE AND AFTER IMPORT/INCLUDE/REQUIRE/USING/EXPORT

REMOVAL

Before After

#==============

Copyright (c) 2024

License: MIT

import os

import sys # system library

'''

Fungsi untuk menghitung faktorial

dengan metode rekursif

'''

def factorial(n): # fungsi utama

 if n == 0:

 return 1

 else:

 return n * factorial(n-1) # rekursi

print(factorial(5)) # test

def factorial(n):

 if n == 0:

 return 1

 else:

 return n *

factorial(n-1)

print(factorial(5))

4. Whitespace Normalization

The fourth step involved whitespace normalization. All

excessive spaces, tabulations, and consecutive blank lines

were reduced to a single space or a single blank line.

The purpose of this step was to minimize formatting

differences that are purely cosmetic, such as indentation

variations, line spacing, or extra spaces.Through

normalization, codes with different visual formats but

identical logic were treated as equivalent, preventing

superficial differences that do not actually reflect distinct

programming styles.

TABLE V

BEFORE AFTER NORMALISASI SPASI

Before After

#==============

Copyright (c) 2024

License: MIT

import os

import sys # system library

'''

Fungsi untuk menghitung faktorial

dengan metode rekursif

'''

def factorial(n): # fungsi utama

 if n == 0:

 return 1

 else:

 return n * factorial(n-1) # rekursi

print(factorial(5)) # test

def factorial(n):

 if n == 0:

 return 1

 else:

 return n *

factorial(n-1)

print(factorial(5))

5. Preservation of Core Writing Style

The final stage focused on preserving the authenticity of

the programmer’s writing style. Preprocessing intentionally

retained variable and function names such as myVariable,

temp, or calculateAverage because naming choices reflect an

individual’s stylistic tendencies.Moreover, the code structure,

including the order of statements, looping patterns,

conditional expressions, and operator styles (e.g., ++i vs i++),

was preserved. Even unused library imports were not

removed if they indicated habitual patterns.Thus,

preprocessing only removed irrelevant elements comments,

license headers, import statements, and redundant spaces

while maintaining the original stylistic features of the source

code.

TABLE VI

BEFORE AND AFTER PRESERVATION OF WRITING STYLE

Before After

#==============

Copyright (c) 2024

License: MIT

import os

import sys # system library

'''

Fungsi untuk menghitung faktorial

dengan metode rekursif

'''

def factorial(n): # fungsi utama

 if n == 0:

 return 1

 else:

 return n * factorial(n-1) # rekursi

print(factorial(5)) # test

def factorial(n):

 if n == 0:

 return 1

 else:

 return n *

factorial(n-1)

print(factorial(5))

After the cleaning and normalization stages, the dataset

was divided into three subsets using the train_test_split

function from the scikit-learn library, with proportions of

70% training, 15% testing, and 15% validation, and the

parameter random_state=42 to ensure reproducibility.

Data splitting was performed on the preprocessed source

code level, rather than on the embedding representations, to

preserve the distribution of coding styles and algorithmic

complexity across all subsets.

This strategy aligns with the principles outlined by Joseph

and Vakayil [7], who argue that there is no universal split

ratio—the optimal proportion depends on dataset size and

model complexity to minimize generalization error.

Furthermore, the CodeXGLUE benchmark framework [8]

adopts similar approaches in various tasks, such as code clone

identificatio and code summarization, ensuring fair and

comparable model evaluation across studies.

JAIC e-ISSN: 2548-6861

Identification of Source Code Plagiarism Using a Natural Language Processing (NLP) Approach Based on Code Writing

Style Analysis (Muhammad Ilham Akbar 1, Novita Kurnia Ningrum)

3083

Such data-splitting strategies have become a standard

practice in deep learning experiments on source code [4], [6],

[11], [18].

Therefore, the 70:15:15 split was chosen as it provides a

balanced trade-off between training size and evaluation

reliability, enabling the model to capture diverse writing

styles while maintaining robust validation and testing

performance.

C. Model Architecture and Algorithm

This study employed a deep learning approach based on

CodeBERT + Siamese Network to detect source code

similarity.

1. Feature Extraction Using CodeBERT

Each code snippet was tokenized using the built-in

tokenizer from CodeBERT (microsoft/codebert-base).

The model generated 768-dimensional embeddings with the

following parameters:

• Hidden size: 768

• Layers: 12

• Attention heads: 12

• Max token length: 512

• Mode: partial fine-tuning — the final layer of

CodeBERT is fine-tuned for task-specific adaptation

while maintaining the semantic stability of the

earlier frozen layers.

The [CLS] token embedding of each code snippet was used

as the vector representation h, then normalized using L2

normalization:

e =
h

|h|
2

, e ϵ R768

where h is the raw [CLS] token vector and ||h||₂ is its L2

norm.This normalization step is standard in contrastive

learning pipelines [7].

Figure 2. Workflow of vector embedding computation

2. Projection Using Siamese Network

Two embedding vectors (e₁ and e₂) were passed through

two identical branches of a Siamese Network with the

following architecture:

Linear (768→256) → ReLU → Dropout(0.3)

→LinearLayer(256→128).

Both branches share weights (shared parameters).

The output is a 128-dimensional latent vector representing the

final semantic representation for each code snippet.

3. Training with CosineEmbedding Loss

The model was trained using CosineEmbeddingLoss,

which encourages similar code vectors to be close together

and dissimilar vectors to move farther apart.

The loss function is defined as:

L(x1, x2, y) = {
1−S (z1,z2)

max(0,S(z1,z2)−m),

y=1 (mirip)

y= −1 (tidak mirip)

where z₁ and z₂ are the latent vectors of code pairs, and m

is the margin for dissimilar pairs.

4. Cosine Similarity Evaluation and Thresholding

After training, the similarity between two code snippets

was measured using cosine similarity:

S(z1, z2) =
z1 .z2

||z1||z2|

A similarity score S ≥ 0.80 was categorized as plagiarized,

while lower scores were considered non-plagiarized.Model

performance was evaluated using accuracy, precision, recall,

and F1-score, along with error analysis to identify false

positives and false negatives. To ensure evaluation

robustness, the dataset was split into training (70%),

validation (15%), and test (15%) sets, with the validation set

used for threshold optimization and early stopping guidance.

III. RESULTS AND DISCUSSION

A. CodeBERT Mechanism and Parameters

 CodeBERT operates based on masked language modeling

(MLM) and replaced token detection (RTD) to learn

relationships between program tokens and their semantic

contexts.In this study, the base model microsoft/codebert-

base was used with the parameters shown below.

TABLE VII

MODEL PARAMETER

Parameter Value Description

Model Type CodeBERT

(base) +

Siamese

Network

Transformer with 12 layers,

768 hidden size, and Siamese

head

Tokenizer RobertaTok

enizer

Tokenizer from

microsoft/codebert-base

 e-ISSN: 2548-6861

JAIC Vol. 9, No. 6, December 2025: 3079 – 3086

3084

Max

Sequence

Length

512 Maximum token length per

code snippet

Batch Size 8 Number of code pairs per

iteration

Learning Rate 2e-5 Optimizer: AdamW

Epoch 5 Number of training cycles

Loss Function CosineEmb

eddingLoss

Distinguishes between

plagiarized and non-

plagiarized pairs

Hidden Dim

(Siamese)

256 Dimension of the Siamese

hidden layer

Output Dim

(Siamese)

128 Dimension of the Siamese

output embedding

Dropout Rate 0.3 Dropout applied to the

Siamese head

Training

Strategy

Partial Fine-

tuning

The final layer of CodeBERT

is fine-tuned for task

adaptation

Similarity

Threshold

0.80 Classification threshold

 CodeBERT produced 768-dimensional embeddings that

capture writing style, structure, and logical meaning of source

code.These embeddings were then used as inputs for the

Siamese Network to calculate pairwise distances.

B. Siamese Network Mechanism

 The Siamese Network receives two embeddings (emb₁,

emb₂) from CodeBERT and computes the cosine similarity to

determine semantic similarity:

similarity(𝐴, 𝐵) =
𝐴 ⋅ 𝐵

∥ 𝐴 ∥∥ 𝐵 ∥

Similarity scores range from 0 to 1:

• 0 → dissimilar

• 1 → highly similar

 The model is trained to yield high similarity scores for

plagiarized pairs and low scores for non-plagiarized ones.

The final output is a similarity percentage, which is then

labeled as “Plagiarized” or “Non-plagiarized” based on the

chosen threshold.

C. Threshold Determination and Rationale

 The threshold value of 0.80 was selected empirically after

testing multiple thresholds from 0.4 to 0.9.

TABEL VIII
MULTI-THRESHOLD EVALUATION OF THE CODEBERT–SIAMESE

MODEL

Threshold Accuracy Precision Recall F1-Score

0.20 0.946 0.899 0.998 0.946

0.25 0.946 0.905 0.998 0.949

0.30 0.946 0.905 0.998 0.949

0.35 0.946 0.905 0.998 0.949

0.40 0.945 0.904 0.996 0.948

0.45 0.949 0.910 0.996 0.951

0.50 0.951 0.914 0.996 0.953

0.55 0.952 0.916 0.996 0.954

0.60 0.954 0.919 0.996 0.956

0.65 0.954 0.926 0.987 0.956

0.70 0.955 0.932 0.982 0.956

0.75 0.960 0.940 0.982 0.961

0.80 0.964 0.952 0.978 0.964

0.85 0.963 0.964 0.962 0.963

0.90 0.965 0.981 0.948 0.964

Based on the evaluation results across multiple threshold

values, it can be concluded that a threshold of 0.80 represents

the optimal value for detecting source code plagiarism. This

selection is grounded in achieving an ideal balance between

precision and recall, which is crucial in academic contexts [1],

[5]. A precision value of 95.2% at this threshold is particularly

important for minimizing false positives, which could have

serious implications for student integrity [5], [23].

Meanwhile, a recall value of 97.8% indicates the system’s

strong ability to detect the majority of actual plagiarism cases

[3], [18].

An F1-score of 96.5% at the 0.80 threshold reflects a

harmonious balance between precision and recall, following

the principle of multi-objective optimization recommended in

similarity detection studies [16]. Previous research suggests

that too low a threshold often leads to high false-positive

rates, while too high a threshold risks missing subtle

plagiarism cases [1], [12]. The chosen threshold of 0.80

provides an optimal solution and aligns with related studies

recommending thresholds within the 0.75–0.85 range for code

plagiarism identificatio in educational settings [14], [15].

Therefore, the 0.80 threshold was selected as the optimal

decision boundary, balancing accuracy and practicality in the

implementation of a plagiarism identificatio system for source

code, and adopted as the standard value in this study.

D. Comparison with AST- and TF-IDF-Based Methods

 To highlight the research gap, three baseline approaches

were compared:
Table IX

COMPARISON OF IDENTIFICATION RESULTS ACROSS METHODS

Method Accuracy Precision Recall F1-

Score

winnowing 0.538 1.000 0.074 0.062

TF-IDF + Cosine 0.553 1.000 0.0187 0.122

AST Edit

Distance

0.502 0.000 0.000 0.000

CodeBERT–

Siamese

0.964 0.952 0.978 0.964

Analysis:

• The AST-based approach only captures syntactic

structures and fails to detect cases where identical logic

is written in a different order.

• The TF-IDF approach relies solely on token-level

similarity and cannot understand semantic meaning.

• The CodeBERT–Siamese approach, on the other hand,

captures both semantics and stylistic patterns, making it

more adaptive to variations in coding styles.

JAIC e-ISSN: 2548-6861

Identification of Source Code Plagiarism Using a Natural Language Processing (NLP) Approach Based on Code Writing

Style Analysis (Muhammad Ilham Akbar 1, Novita Kurnia Ningrum)

3085

E. Error Analysis

Based on test set results, the model produced an error rate

of 4.6%, corresponding to 7 misclassifications out of 150 code

pairs. These errors fall into two main categories:

1. False Positives (FP) — cases where two code snippets

were classified as similar but were actually different.

These errors often stem from structural similarities or

shared templates in lab assignments [1], [2], where

syntax-based similarity methods frequently misinterpret

structural resemblance as semantic similarity.

2. False Negatives (FN) — cases where two genuinely

similar code snippets were not detected as such. This

typically occurs due to significant alterations in variable

names, function orders, or comments, which modify the

token representation and reduce semantic similarity [4],

[12]. Such findings align with previous studies noting

that surface-level structural changes can obscure

underlying semantic equivalence.

The 0.80 threshold was determined through an empirical

trade-off between precision (0.952) and recall (0.978). This

value offers an optimal equilibrium between high recognition

capability and low classification error, consistent with

established guidelines for optimal threshold selection in

Siamese networks [16].

Overall, the error rate below 5% demonstrates that the

proposed model achieves high reliability in detecting

semantic similarities between code fragments—consistent

with recent studies on vector-based semantic plagiarism

detection [6], [11], [20], [21].

IV. CONCLUSION

Based on the conducted experiments and analysis, it can be

concluded that the CodeBERT–Siamese Network–based

source code plagiarism identificatio system has been

successfully developed, demonstrating high effectiveness in

identifying semantic similarities between code fragments.

The model achieved an accuracy of 96.4% with an error rate

of 4.6% on a dataset comprising 996 pairs of multilingual

source code.

The light cleaning approach applied during data

preprocessing proved effective in maintaining essential

coding-style characteristics while removing decorative or

irrelevant elements such as comments, license headers, and

import declarations. This strategy allowed the model to focus

on logical structure and stylistic writing patterns, enhancing

semantic representation accuracy.

Experimental results confirmed that the optimal threshold

value of 0.80 provided the best balance between precision

(95.2%) and recall (97.8%), minimizing false positives while

maintaining sensitivity to subtle plagiarism cases. These

findings highlight the superiority of the proposed method

compared to traditional approaches like Winnowing and TF-

IDF, which rely primarily on lexical similarity and fail to

capture contextual semantics.

The integration of CodeBERT as a semantic feature

extractor with a Siamese Network as a similarity learning

model provides a significant advantage in handling syntactic

variations and stylistic modifications. This combination

makes the system more robust against plagiarism obfuscation

techniques, such as variable renaming, comment insertion, or

formatting changes.

In summary, this research contributes to the development

of an adaptive and intelligent plagiarism identificatio system,

with strong potential applications in academic integrity

assurance, particularly within computer science and

informatics education.

REFERENCES

[1] M. S. Ramli, S. Cokrowibowo, and M. F. Rustan, “Uji Plagiarism
pada Tugas Mahasiswa Menggunakan Algoritma Winnowing,” J.

Appl. Comput. Sci. Technol., vol. 2, no. 2, pp. 108–112, 2021, doi:

10.52158/jacost.v2i2.177.
[2] I. G. A. Eka Putra and I. W. Supriana, “Deteksi Plagiarisme Source

Code Tugas Mahasiswa Menggunakan Algoritma Cosine
Similarity Dan Pembobotan TF-IDF,” J. Nas. Teknol. Inf. dan Apl.,

vol. 1, no. 1, p. 575, 2022, [Online]. Available:

https://ojs.unud.ac.id/index.php/jnatia/article/view/92871
[3] Di. K. Tankala, T. Venugopal, and B. Vikas, “Java Source Code

Similarity Detection Using Siamese Networks,” J. Theor. Appl. Inf.

Technol., vol. 100, no. 17, pp. 5507–5514, 2022.
[4] T. Sonnekalb, B. Gruner, C. A. Brust, and P. Mäder,

“Generalizability of Code Clone Detection on CodeBERT,” in

ACM International Conference Proceeding Series, Association for
Computing Machinery, Sep. 2022. doi: 10.1145/3551349.3561165.

[5] M. A. Pratiwi and N. Aisya, “Fenomena plagiarisme akademik di

era digital,” Publ. Lett., vol. 1, no. 2, pp. 16–33, 2021, doi:
10.48078/publetters.v1i2.23.

[6] S. Sahar, M. Younas, M. M. Khan, and M. U. Sarwar, “DP-CCL:

A Supervised Contrastive Learning Approach Using CodeBERT
Model in Software Defect Prediction,” IEEE Access, vol. 12, no.

January, pp. 22582–22594, 2024, doi:

10.1109/ACCESS.2024.3362896.
[7] V. R. Joseph and A. Vakayil, “SPlit: An Optimal Method for Data

Splitting,” Technometrics, vol. 64, no. 2, pp. 166–176, 2022, doi:

10.1080/00401706.2021.1921037.
[8] S. Lu et al., “CodeXGLUE: A Machine Learning Benchmark

Dataset for Code Understanding and Generation,” Adv. Neural Inf.

Process. Syst., 2021.
[9] M. Sajid, M. Sanaullah, M. Fuzail, T. S. Malik, and S. M.

Shuhidan, “Comparative analysis of text-based plagiarism

detection techniques,” PLoS One, vol. 20, no. 4 April, pp. 1–28,
2025, doi: 10.1371/journal.pone.0319551.

[10] V. R. Joseph, “Optimal ratio for data splitting,” Stat. Anal. Data

Min., vol. 15, no. 4, pp. 531–538, 2022, doi: 10.1002/sam.11583.
[11] S. Arshad, S. Abid, and S. Shamail, “CodeBERT for Code Clone

Detection: A Replication Study,” Proc. - 2022 IEEE 16th Int.

Work. Softw. Clones, IWSC 2022, pp. 39–45, 2022, doi:
10.1109/IWSC55060.2022.00015.

[12] F. Ebrahim and M. Joy, “Semantic Similarity Search for Source

Code Plagiarism Detection: An Exploratory Study,” Annu. Conf.
Innov. Technol. Comput. Sci. Educ. ITiCSE, vol. 1, pp. 360–366,

2024, doi: 10.1145/3649217.3653622.

[13] A. Fedele, R. Guidotti, and D. Pedreschi, Explaining Siamese
networks in few-shot learning, vol. 113, no. 10. Springer US, 2024.

doi: 10.1007/s10994-024-06529-8.

[14] N. Gandhi, K. Gopalan, and P. Prasad, “A Support Vector Machine
based approach for plagiarism detection in Python code

submissions in undergraduate settings,” Front. Comput. Sci., vol.

6, 2024, doi: 10.3389/fcomp.2024.1393723.

 e-ISSN: 2548-6861

JAIC Vol. 9, No. 6, December 2025: 3079 – 3086

3086

[15] E. E. Htet et al., “Code Plagiarism Checking Function and Its

Application for Code Writing Problem in Java Programming
Learning Assistant System †,” Analytics, vol. 3, no. 1, pp. 46–62,

2024, doi: 10.3390/analytics3010004.

[16] B. Kriuk and F. Kriuk, “Multi-Objective Optimal Threshold
Selection for Similarity Functions in Siamese Networks for

Semantic Textual Similarity Tasks,” 2024, doi:

10.20944/preprints202407.0020.v1.
[17] P. T. Nguyen, J. Di Rocco, C. Di Sipio, R. Rubei, D. Di Ruscio,

and M. Di Penta, “GPTSniffer: A CodeBERT-based classifier to

detect source code written by ChatGPT,” J. Syst. Softw., vol. 214,
no. August 2023, p. 112059, 2024, doi: 10.1016/j.jss.2024.112059.

[18] B. Wan, S. Dong, J. Zhou, and Y. Qian, “SJBCD: A Java Code

Clone Detection Method Based on Bytecode Using Siamese Neural
Network,” Appl. Sci., vol. 13, no. 17, 2023, doi:

10.3390/app13179580.

[19] M. A. Yahya and D. K. Kim, “CLCD-I: Cross-Language Clone
Detection by Using Deep Learning with InferCode,” Computers,

vol. 12, no. 1, pp. 1–11, 2023, doi: 10.3390/computers12010012.

[20] M. Zubkov, E. Spirin, E. Bogomolov, and T. Bryksin, Evaluation

of Contrastive Learning with Various Code Representations for
Code Clone Detection, vol. 1, no. 1. Association for Computing

Machinery, 2022. doi: 10.2139/ssrn.4159812.

[21] R. Maertens et al., “Discovering and exploring cases of educational
source code plagiarism with Dolos,” SoftwareX, vol. 26, no. May,

p. 101755, 2024, doi: 10.1016/j.softx.2024.101755.

[22] A. Y. Bramantya, T. Hasanuddin, and F. Umar, “Analisis Metode
Winnowing Dalam Pendeteksian Plagiarisme Judul,” Bul. Sist. Inf.

dan Teknol. Islam, vol. 3, no. 4, pp. 268–273, 2022, doi:

10.33096/busiti.v3i4.1469.
[23] E. Dickey, “The Failure of Plagiarism Detection in Competitive

Programming,” 2025, [Online]. Available:

http://arxiv.org/abs/2505.08244
[24] W. Yang, “Identification and Prevention of Code Open Source

Quotation and Plagiarism — Innovative Solutions to Enhance Code

Plagiarism Detection Tools,” Acad. J. Comput. Inf. Sci., vol. 7, no.
1, pp. 65–71, 2024, doi: 10.25236/ajcis.2024.070110.

