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 Source code plagiarism identificatio requires a system capable of identifying 

semantic similarity rather than mere textual resemblance. This study utilized a 

dataset of 1,000 source code files, which after cleaning resulted in 996 individual 

code samples collected from GitHub repositories. The dataset included various 

programming languages (Python, Java, JavaScript, TypeScript, C++), divided into 

697 training data, 149 validation data, and 149 testing data. The model employed 

was CodeBERT, configured with a hidden size of 768, 12 layers, and 12 attention 

heads. CodeBERT generated vector embeddings for each code sample, which were 

then projected by a Siamese Network to calculate cosine similarity between code 

pairs. Testing used a threshold of 0.80 to classify plagiarism. The identification 

results achieved an accuracy of 96.4%, precision of 95.2%, recall of 97.8%, F1-score 

of 96.4%, and an error rate of 4.6%. The system produced similarity scores and status 

labels of “plagiarism detected” or “not detected,” demonstrating the effectiveness of 

the CodeBERT-based approach for adaptive and intelligent code similarity 

identificatio. 
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I. INTRODUCTION 

Source code plagiarism is a serious issue within academic 

environments, particularly in the fields of informatics and 

computer science. Various studies have reported that this 

unethical practice has become increasingly widespread in the 

digital era, driven by the ease of access to online repositories 

and the low awareness of academic integrity among students 

[5], [15], [21]. Its impact is multidimensional: for students, 

plagiarism hinders conceptual understanding and reduces 

authentic programming competence; while for institutions, 

the prevalence of such violations can undermine academic 

credibility and erode public trust in the quality of graduates. 

According to Dickey [23], “Plagiarism in CS education is 

unfortunately common. Surveys of students have repeatedly 

shown a significant majority admit to some form of code 

copying or undue collaboration. For instance, in a large lower-

division CS course of 200–300 students, teaching staff 

typically discovered 20–40 blatant cases of code plagiarism 

each semester. These confirmed cases (around 10–15% of the 

class) represent a lower bound, as instructors often focus only 

on the most obvious instances and ignore cases with plausible 

deniability. In other words, many subtle or well-disguised 

code copying incidents go undetected or ignored under 

current practices. Other studies confirm this lower bound, 

with some as high as 75%. The true incidence of plagiarism 

is thus suspected to be higher, posing a serious threat to the 

fairness and educational validity of programming assessments 

and CS degrees.”This quotation indicates that the level of 

plagiarism in computer science education is considerably high 

and often not fully detected, since most existing systems are 

limited to identifying textual similarities. Therefore, code 

plagiarism identificatio requires a more contextual and 

semantic approach rather than merely comparing character- 

or token-level similarities. 

A number of methods have been developed to detect source 

code similarity; however, each has its own limitations. 

Traditional approaches such as Winnowing and TF-IDF with 

Cosine Similarity [1], [2], [22] are capable of identifying 

textual similarities but fail to capture the semantic and 

functional meaning of programs [9]. These systems operate 

only at the lexical level, making them easily deceived by 
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syntactic modifications that do not alter the underlying 

program logic [12], [14].Recent studies have shown that deep 

learning–based approaches can overcome these limitations by 

understanding the functional context and semantic 

relationships between lines of code. Models such as the 

Siamese Network have proven effective in comparing code 

representations that convey similar meanings despite 

differences in structure or writing style [3], [18]. Meanwhile, 

pre-trained models such as CodeBERT are designed to 

comprehend semantic representations across programming 

languages, producing embeddings that are robust to variations 

in syntax and enabling more accurate identificatio of code 

similarity [4], [6], [11], [20]. 

This study identifies source code plagiarism using a deep 

learning–based approach with a focus on analyzing 

programming style (coding style). The dataset consists of 

1,000 source code projects collected from GitHub 

repositories, covering five major programming languages: 

Python, Java, JavaScript, TypeScript, and C++. The data are 

divided into 700 training samples, 150 validation samples, 

and 150 testing samples to ensure result generalization.The 

system process comprises four main stages: (1) code 

collection and preprocessing, including the removal of 

comments, license headers, and structural normalization; (2) 

semantic representation using CodeBERT with a hidden size 

of 768 and 12 attention heads; (3) mapping of the two 

representations into a lower-dimensional vector space using a 

Siamese Network architecture with contrastive loss; and (4) 

calculation of similarity levels using cosine similarity 

values.The system produces outputs in the form of a similarity 

percentage between two code segments along with a status 

label “plagiarism detected” or “no plagiarism detected.” 

Experimental results demonstrate that this approach can 

effectively measure semantic code similarity with high 

accuracy and low error rates, while also reinforcing the 

potential of programming style analysis as a unique digital 

identity to support academic integrity. 

In general, the identification system operates by uploading 

two or more program code files, which then undergo a 

preprocessing stage to remove comments, excessive spaces, 

and irrelevant string literals, as well as to normalize variable 

and function names to reduce lexical bias. Subsequently, the 

cleaned code is tokenized using CodeBERT’s built-in 

tokenizer. The feature extraction stage maps the tokens into 

high-dimensional vector representations that capture both 

syntactic and semantic information. The extracted vectors are 

then processed by a Siamese Network to compute the 

similarity level between code snippets, producing similarity 

scores ranging from 0 to 1. The final stage presents the results 

in the form of a similarity percentage along with a plagiarism 

status label. 

The objective of this study is to develop an NLP-based 

source code plagiarism identification system that integrates 

CodeBERT and a Siamese Network to identify code 

similarity even when modifications are made to programming 

style aspects such as variable renaming, comment insertion, 

or syntactic reformatting. The system is designed to generate 

embeddings that capture both syntactic and semantic 

information, directly compare pairs of code snippets to obtain 

similarity scores, and evaluate the effectiveness of the 

proposed method on a multi-language programming dataset. 

Accordingly, this research is expected to assist lecturers and 

academic institutions in detecting indications of source code 

plagiarism and upholding academic integrity within higher 

education environments. 

 

II. METHODS 

This research is designed with a systematic workflow 

consisting of several main stages, starting from data collection 

and code preprocessing to feature extraction, model training, 

and evaluation. Each stage plays a crucial role in establishing 

a solid methodological foundation to ensure results that are 

accurate, measurable, and reproducible. 

 

 

 

 

 

 

 

 

 

 
Figure 1. Research workflow 

 

To provide an overview of the research workflow, Figure 

1 presents the flowchart of the proposed research 

methodology. The diagram visually illustrates the 

relationships between each stage, facilitating the reader’s 

understanding of the entire process—from raw data collection 

to the evaluation of the plagiarism identification model. 

 

A. Data Collection and Preparation 

The dataset was obtained from public GitHub repositories 

using the GitHub API with token-based authentication. The 

search focused on simple algorithms such as Fibonacci, 

Greatest Common Divisor (GCD), Least Common Multiple 

(LCM), calculator, and sorting algorithms, implemented in 

five popular programming languages: Python, Java, 

JavaScript, TypeScript, and C++. 

Each retrieved file was centrally stored in the directory 

/content/drive/MyDrive/Jurnal/dataseyrrts2. The total dataset 

initially contained 1,000 source code files, each exhibiting 

diverse structures and coding styles. However, after the data 

cleaning process, 996 files remained. 

For experimental purposes, code pairs were divided into 

two categories: 

• Plagiarized pairs — code pairs that share identical logic 

or algorithms but differ in writing style, such as variable 

renaming, indentation changes, or the addition of 

comments. 
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• Non-plagiarized pairs — code pairs with different 

functions and logical structures, derived from non-

equivalent algorithm implementations. 

The pairing process was conducted semi-manually, 

considering algorithmic similarity and program logic 

structure rather than mere character-level resemblance. This 

process involved analyzing the functional context and 

execution sequence of the programs to ensure that the 

plagiarized pairs authentically represented conceptual 

similarity, while the non-plagiarized pairs reflected clear 

semantic differences. 

TABLE I 

DATASET INFORMATION 

No Programming 

Language 

 

Start 

Year 

 

Updated 

Year 

 

Total 

Files 

 

1 Python 2020 2025 387 

2 Typescript 2020 2025 239 

3 Java 2020 2025 220 

4 Javascript 2020 2025 143 

5 C++ 2022 2024 10 

 Total Files 1000 

 

B. Pra-Pemrosesan Data 

The preprocessing stage aimed to ensure format 

consistency and reduce noise without removing distinctive 

stylistic features of the source code. A light cleaning approach 

was applied, consisting of the following steps. 

 

1. Comment Removal 

The first step was to remove comments from the code. 

Comments were categorized into two types: 

• Multi-line comments, such as /* ... */, """...""", or 

'''...''' 

• Single-line comments, such as // ..., # ..., or -- ... 

Comments were removed because they serve only as 

decorative explanations that do not affect the core logic of the 

program. Moreover, comments can easily be manipulated to 

disguise plagiarism without changing the execution flow. 

By removing comments, the analysis focuses on executable 

code, leading to more objective identification results. 

 

2. License Header Removal 

The second step was to remove license headers, which 

typically appear at the beginning of source files—usually 

within the first ten lines. These headers often contain 

keywords such as copyright, license, MIT, Apache, or 

GPL.License information was excluded because it is 

irrelevant to a programmer’s coding style and often identical 

across many projects, potentially creating false 

similarities.By removing license headers, the system can 

better focus on the unique stylistic aspects of each 

programmer’s code. 

 

 

TABLE II 

BEFORE AND AFTER COMMENT REMOVAL 

Before After 

#============== 

# Copyright (c) 2024 

# License: MIT 

 

import os 

import sys  # system library 

 

'''  

Fungsi untuk menghitung 

faktorial  

dengan metode rekursif 

''' 

 

def factorial(n):  # fungsi utama 

    if n == 0: 

        return 1 

    else: 

        return n * factorial(n-1)  # 

rekursi 

 

print(factorial(5))  # test 

#============== 

# Copyright (c) 2024 

# License: MIT 

 

import os 

import sys  # system 

library 

 

def factorial(n):  # 

fungsi utama 

    if n == 0: 

        return 1 

    else: 

        return n * 

factorial(n-1)  # rekursi 

 

print(factorial(5))  # 

test 

TABLE III 

BEFORE AND AFTER LICENSE HEADER REMOVAL 

Before  After 

#============== 

# Copyright (c) 2024 

# License: MIT 

 

import os 

import sys  # system library 

 

'''  

Fungsi untuk menghitung 

faktorial  

dengan metode rekursif 

''' 

 

def factorial(n):  # fungsi utama 

    if n == 0: 

        return 1 

    else: 

        return n * factorial(n-1)  # 

rekursi 

 

print(factorial(5))  # test 

import os 

import sys   

 

def factorial(n):   

    if n == 0: 

        return 1 

    else: 

        return n * 

factorial(n-1)   

 

print(factorial(5))   

 

3. Removal of Import/Include/Require/Using/Export 

Statements 

The next step was to remove lines containing external 

library declarations, such as import, from, include, require, 

using, and export. These lines do not contribute to the 

program’s logical writing style but merely indicate 

dependencies. Since import patterns tend to be highly 

uniform, they were considered noise in the stylistic 

analysis.By eliminating these statements, preprocessing 
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became more effective in highlighting features that truly 

reflect the programmer’s unique coding style. 

TABLE IV 
BEFORE AND AFTER IMPORT/INCLUDE/REQUIRE/USING/EXPORT 

REMOVAL 

Before  After  

#============== 

# Copyright (c) 2024 

# License: MIT 

 

import os 

import sys  # system library 

 

'''  

Fungsi untuk menghitung faktorial  

dengan metode rekursif 

''' 

 

def factorial(n):  # fungsi utama 

    if n == 0: 

        return 1 

    else: 

        return n * factorial(n-1)  # rekursi 

 

print(factorial(5))  # test 

def factorial(n):   

    if n == 0: 

        return 1 

    else: 

        return n * 

factorial(n-1)   

 

print(factorial(5))   

 

4. Whitespace Normalization 

The fourth step involved whitespace normalization. All 

excessive spaces, tabulations, and consecutive blank lines 

were reduced to a single space or a single blank line. 

The purpose of this step was to minimize formatting 

differences that are purely cosmetic, such as indentation 

variations, line spacing, or extra spaces.Through 

normalization, codes with different visual formats but 

identical logic were treated as equivalent, preventing 

superficial differences that do not actually reflect distinct 

programming styles. 

TABLE V 

BEFORE AFTER NORMALISASI SPASI 

Before  After 

#============== 

# Copyright (c) 2024 

# License: MIT 

 

import os 

import sys  # system library 

 

'''  

Fungsi untuk menghitung faktorial  

dengan metode rekursif 

''' 

 

def factorial(n):  # fungsi utama 

    if n == 0: 

        return 1 

    else: 

        return n * factorial(n-1)  # rekursi 

 

print(factorial(5))  # test 

def factorial(n): 

    if n == 0: 

        return 1 

    else: 

        return n * 

factorial(n-1) 

print(factorial(5)) 

 

5. Preservation of Core Writing Style 

The final stage focused on preserving the authenticity of 

the programmer’s writing style. Preprocessing intentionally 

retained variable and function names such as myVariable, 

temp, or calculateAverage because naming choices reflect an 

individual’s stylistic tendencies.Moreover, the code structure, 

including the order of statements, looping patterns, 

conditional expressions, and operator styles (e.g., ++i vs i++), 

was preserved. Even unused library imports were not 

removed if they indicated habitual patterns.Thus, 

preprocessing only removed irrelevant elements comments, 

license headers, import statements, and redundant spaces 

while maintaining the original stylistic features of the source 

code. 

TABLE VI  

BEFORE AND AFTER PRESERVATION OF WRITING STYLE 

Before  After  

#============== 

# Copyright (c) 2024 

# License: MIT 

 

import os 

import sys  # system library 

 

'''  

Fungsi untuk menghitung faktorial  

dengan metode rekursif 

''' 

 

def factorial(n):  # fungsi utama 

    if n == 0: 

        return 1 

    else: 

        return n * factorial(n-1)  # rekursi 

 

print(factorial(5))  # test 

def factorial(n): 

    if n == 0: 

        return 1 

    else: 

        return n * 

factorial(n-1) 

print(factorial(5)) 

 

After the cleaning and normalization stages, the dataset 

was divided into three subsets using the train_test_split 

function from the scikit-learn library, with proportions of 

70% training, 15% testing, and 15% validation, and the 

parameter random_state=42 to ensure reproducibility. 

Data splitting was performed on the preprocessed source 

code level, rather than on the embedding representations, to 

preserve the distribution of coding styles and algorithmic 

complexity across all subsets. 

This strategy aligns with the principles outlined by Joseph 

and Vakayil [7], who argue that there is no universal split 

ratio—the optimal proportion depends on dataset size and 

model complexity to minimize generalization error. 

Furthermore, the CodeXGLUE benchmark framework [8] 

adopts similar approaches in various tasks, such as code clone 

identificatio and code summarization, ensuring fair and 

comparable model evaluation across studies. 
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Such data-splitting strategies have become a standard 

practice in deep learning experiments on source code [4], [6], 

[11], [18]. 

Therefore, the 70:15:15 split was chosen as it provides a 

balanced trade-off between training size and evaluation 

reliability, enabling the model to capture diverse writing 

styles while maintaining robust validation and testing 

performance. 

C. Model Architecture and Algorithm 

This study employed a deep learning approach based on 

CodeBERT + Siamese Network to detect source code 

similarity. 

1. Feature Extraction Using CodeBERT 

Each code snippet was tokenized using the built-in 

tokenizer from CodeBERT (microsoft/codebert-base). 

The model generated 768-dimensional embeddings with the 

following parameters: 

• Hidden size: 768 

• Layers: 12 

• Attention heads: 12 

• Max token length: 512 

• Mode: partial fine-tuning — the final layer of 

CodeBERT is fine-tuned for task-specific adaptation 

while maintaining the semantic stability of the 

earlier frozen layers. 

 

The [CLS] token embedding of each code snippet was used 

as the vector representation h, then normalized using L2 

normalization: 

e =
h

|h|
2

, e ϵ R768 

 

where h is the raw [CLS] token vector and ||h||₂ is its L2 

norm.This normalization step is standard in contrastive 

learning pipelines [7]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2. Workflow of vector embedding computation 

 

2. Projection Using Siamese Network 

Two embedding vectors (e₁ and e₂) were passed through 

two identical branches of a Siamese Network with the 

following architecture: 

 

Linear (768→256) → ReLU → Dropout(0.3) 

→LinearLayer(256→128). 

 

Both branches share weights (shared parameters). 

The output is a 128-dimensional latent vector representing the 

final semantic representation for each code snippet. 

3. Training with CosineEmbedding Loss 

The model was trained using CosineEmbeddingLoss, 

which encourages similar code vectors to be close together 

and dissimilar vectors to move farther apart. 

The loss function is defined as: 

 

L(x1, x2, y) = {
1−S (z1,z2)

max(0,S(z1,z2)−m),
 

y=1 (mirip)

y= −1 (tidak mirip)
 

 

where z₁ and z₂ are the latent vectors of code pairs, and m 

is the margin for dissimilar pairs. 

4. Cosine Similarity Evaluation and Thresholding 

After training, the similarity between two code snippets 

was measured using cosine similarity: 

 

S(z1, z2) =  
z1 .z2

||z1||z2|
 

 

A similarity score S ≥ 0.80 was categorized as plagiarized, 

while lower scores were considered non-plagiarized.Model 

performance was evaluated using accuracy, precision, recall, 

and F1-score, along with error analysis to identify false 

positives and false negatives. To ensure evaluation 

robustness, the dataset was split into training (70%), 

validation (15%), and test (15%) sets, with the validation set 

used for threshold optimization and early stopping guidance. 

 

III. RESULTS AND DISCUSSION 

A. CodeBERT Mechanism and Parameters 

     CodeBERT operates based on masked language modeling 

(MLM) and replaced token detection (RTD) to learn 

relationships between program tokens and their semantic 

contexts.In this study, the base model microsoft/codebert-

base was used with the parameters shown below. 

TABLE VII 

MODEL PARAMETER 

Parameter Value Description 

Model Type CodeBERT 

(base) + 

Siamese 

Network 

Transformer with 12 layers, 

768 hidden size, and Siamese 

head 

Tokenizer RobertaTok

enizer 

Tokenizer from 

microsoft/codebert-base 
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Max 

Sequence 

Length 

512 Maximum token length per 

code snippet 

Batch Size 8 Number of code pairs per 

iteration 

Learning Rate 2e-5 Optimizer: AdamW 

Epoch 5 Number of training cycles 

Loss Function CosineEmb

eddingLoss 

Distinguishes between 

plagiarized and non-

plagiarized pairs 

Hidden Dim 

(Siamese) 

256 Dimension of the Siamese 

hidden layer 

Output Dim 

(Siamese) 

128 Dimension of the Siamese 

output embedding 

Dropout Rate 0.3 Dropout applied to the 

Siamese head 

Training 

Strategy 

Partial Fine-

tuning 

The final layer of CodeBERT 

is fine-tuned for task 

adaptation 

Similarity 

Threshold 

0.80 Classification threshold 

 

     CodeBERT produced 768-dimensional embeddings that 

capture writing style, structure, and logical meaning of source 

code.These embeddings were then used as inputs for the 

Siamese Network to calculate pairwise distances. 

B. Siamese Network Mechanism 

     The Siamese Network receives two embeddings (emb₁, 

emb₂) from CodeBERT and computes the cosine similarity to 

determine semantic similarity: 

similarity(𝐴, 𝐵) =
𝐴 ⋅ 𝐵

∥ 𝐴 ∥∥ 𝐵 ∥
 

 

Similarity scores range from 0 to 1: 

• 0 → dissimilar 

• 1 → highly similar 

     The model is trained to yield high similarity scores for 

plagiarized pairs and low scores for non-plagiarized ones. 

The final output is a similarity percentage, which is then 

labeled as “Plagiarized” or “Non-plagiarized” based on the 

chosen threshold. 

 

C. Threshold Determination and Rationale 

     The threshold value of 0.80 was selected empirically after 

testing multiple thresholds from 0.4 to 0.9. 

TABEL VIII  
MULTI-THRESHOLD EVALUATION OF THE CODEBERT–SIAMESE 

MODEL 

Threshold Accuracy Precision Recall F1-Score 

0.20 0.946 0.899 0.998 0.946 

0.25 0.946 0.905 0.998 0.949 

0.30 0.946 0.905 0.998 0.949 

0.35 0.946 0.905 0.998 0.949 

0.40 0.945 0.904 0.996 0.948 

0.45 0.949 0.910 0.996 0.951 

0.50 0.951 0.914 0.996 0.953 

0.55 0.952 0.916 0.996 0.954 

0.60 0.954 0.919 0.996 0.956 

0.65 0.954 0.926 0.987 0.956 

0.70 0.955 0.932 0.982 0.956 

0.75 0.960 0.940 0.982 0.961 

0.80 0.964 0.952 0.978 0.964 

0.85 0.963 0.964 0.962 0.963 

0.90 0.965 0.981 0.948 0.964 

 

Based on the evaluation results across multiple threshold 

values, it can be concluded that a threshold of 0.80 represents 

the optimal value for detecting source code plagiarism. This 

selection is grounded in achieving an ideal balance between 

precision and recall, which is crucial in academic contexts [1], 

[5]. A precision value of 95.2% at this threshold is particularly 

important for minimizing false positives, which could have 

serious implications for student integrity [5], [23]. 

Meanwhile, a recall value of 97.8% indicates the system’s 

strong ability to detect the majority of actual plagiarism cases 

[3], [18]. 

An F1-score of 96.5% at the 0.80 threshold reflects a 

harmonious balance between precision and recall, following 

the principle of multi-objective optimization recommended in 

similarity detection studies [16]. Previous research suggests 

that too low a threshold often leads to high false-positive 

rates, while too high a threshold risks missing subtle 

plagiarism cases [1], [12]. The chosen threshold of 0.80 

provides an optimal solution and aligns with related studies 

recommending thresholds within the 0.75–0.85 range for code 

plagiarism identificatio in educational settings [14], [15]. 

Therefore, the 0.80 threshold was selected as the optimal 

decision boundary, balancing accuracy and practicality in the 

implementation of a plagiarism identificatio system for source 

code, and adopted as the standard value in this study. 

 

D. Comparison with AST- and TF-IDF-Based Methods 

     To highlight the research gap, three baseline approaches 

were compared: 
Table IX 

COMPARISON OF IDENTIFICATION RESULTS ACROSS METHODS 

 
Method Accuracy Precision Recall F1-

Score 

winnowing 0.538 1.000 0.074 0.062 

TF-IDF + Cosine 0.553 1.000 0.0187 0.122 

AST Edit 

Distance 

0.502 0.000 0.000 0.000 

CodeBERT–

Siamese 

0.964 0.952 0.978 0.964 

 

Analysis: 

• The AST-based approach only captures syntactic 

structures and fails to detect cases where identical logic 

is written in a different order. 

• The TF-IDF approach relies solely on token-level 

similarity and cannot understand semantic meaning. 

• The CodeBERT–Siamese approach, on the other hand, 

captures both semantics and stylistic patterns, making it 

more adaptive to variations in coding styles. 
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E. Error Analysis 

Based on test set results, the model produced an error rate 

of 4.6%, corresponding to 7 misclassifications out of 150 code 

pairs. These errors fall into two main categories: 

1. False Positives (FP) — cases where two code snippets 

were classified as similar but were actually different. 

These errors often stem from structural similarities or 

shared templates in lab assignments [1], [2], where 

syntax-based similarity methods frequently misinterpret 

structural resemblance as semantic similarity. 

2. False Negatives (FN) — cases where two genuinely 

similar code snippets were not detected as such. This 

typically occurs due to significant alterations in variable 

names, function orders, or comments, which modify the 

token representation and reduce semantic similarity [4], 

[12]. Such findings align with previous studies noting 

that surface-level structural changes can obscure 

underlying semantic equivalence. 

The 0.80 threshold was determined through an empirical 

trade-off between precision (0.952) and recall (0.978). This 

value offers an optimal equilibrium between high recognition 

capability and low classification error, consistent with 

established guidelines for optimal threshold selection in 

Siamese networks [16]. 

Overall, the error rate below 5% demonstrates that the 

proposed model achieves high reliability in detecting 

semantic similarities between code fragments—consistent 

with recent studies on vector-based semantic plagiarism 

detection [6], [11], [20], [21]. 

 

IV. CONCLUSION 

Based on the conducted experiments and analysis, it can be 

concluded that the CodeBERT–Siamese Network–based 

source code plagiarism identificatio system has been 

successfully developed, demonstrating high effectiveness in 

identifying semantic similarities between code fragments. 

The model achieved an accuracy of 96.4% with an error rate 

of 4.6% on a dataset comprising 996 pairs of multilingual 

source code. 

The light cleaning approach applied during data 

preprocessing proved effective in maintaining essential 

coding-style characteristics while removing decorative or 

irrelevant elements such as comments, license headers, and 

import declarations. This strategy allowed the model to focus 

on logical structure and stylistic writing patterns, enhancing 

semantic representation accuracy. 

Experimental results confirmed that the optimal threshold 

value of 0.80 provided the best balance between precision 

(95.2%) and recall (97.8%), minimizing false positives while 

maintaining sensitivity to subtle plagiarism cases. These 

findings highlight the superiority of the proposed method 

compared to traditional approaches like Winnowing and TF-

IDF, which rely primarily on lexical similarity and fail to 

capture contextual semantics. 

The integration of CodeBERT as a semantic feature 

extractor with a Siamese Network as a similarity learning 

model provides a significant advantage in handling syntactic 

variations and stylistic modifications. This combination 

makes the system more robust against plagiarism obfuscation 

techniques, such as variable renaming, comment insertion, or 

formatting changes. 

In summary, this research contributes to the development 

of an adaptive and intelligent plagiarism identificatio system, 

with strong potential applications in academic integrity 

assurance, particularly within computer science and 

informatics education.  
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