Journal of Applied Informatics and Computing (JAIC)
Vol.9, No.6, December 2025, pp. 3079~3086

e-ISSN: 2548-6861

3079

Identification of Source Code Plagiarism Using a Natural Language
Processing (NLP) Approach Based on Code Writing Style Analysis

Muhammad Ilham Akbar !, Novita Kurnia Ningrum 2

Teknik Informatika, Universitas Dian Nuswantoro

111202214109@mhs.dinus.ac.id !, novita.kn@dsn.dinus.ac.id 2

Article Info

ABSTRACT

Article history:

Received 2025-09-13
Revised 2025-11-11
Accepted 2025-11-15

Keyword:

Code Plagiarism,
CodeBert,
Siamese Network,
Deep Learning,

Source Code Plagiarism,

Identification.

Source code plagiarism identificatio requires a system capable of identifying
semantic similarity rather than mere textual resemblance. This study utilized a
dataset of 1,000 source code files, which after cleaning resulted in 996 individual
code samples collected from GitHub repositories. The dataset included various
programming languages (Python, Java, JavaScript, TypeScript, C++), divided into
697 training data, 149 validation data, and 149 testing data. The model employed
was CodeBERT, configured with a hidden size of 768, 12 layers, and 12 attention
heads. CodeBERT generated vector embeddings for each code sample, which were
then projected by a Siamese Network to calculate cosine similarity between code
pairs. Testing used a threshold of 0.80 to classify plagiarism. The identification
results achieved an accuracy of 96.4%, precision of 95.2%, recall of 97.8%, F1-score
0f96.4%, and an error rate of 4.6%. The system produced similarity scores and status
labels of “plagiarism detected” or “not detected,” demonstrating the effectiveness of
the CodeBERT-based approach for adaptive and intelligent code similarity

identificatio.

This is an open access article under the CC—BY-SA license.

I. INTRODUCTION

Source code plagiarism is a serious issue within academic
environments, particularly in the fields of informatics and
computer science. Various studies have reported that this
unethical practice has become increasingly widespread in the
digital era, driven by the ease of access to online repositories
and the low awareness of academic integrity among students
[5], [15], [21]. Its impact is multidimensional: for students,
plagiarism hinders conceptual understanding and reduces
authentic programming competence; while for institutions,
the prevalence of such violations can undermine academic
credibility and erode public trust in the quality of graduates.
According to Dickey [23], “Plagiarism in CS education is
unfortunately common. Surveys of students have repeatedly
shown a significant majority admit to some form of code
copying or undue collaboration. For instance, in a large lower-
division CS course of 200-300 students, teaching staff
typically discovered 20—40 blatant cases of code plagiarism
each semester. These confirmed cases (around 10—15% of the
class) represent a lower bound, as instructors often focus only

on the most obvious instances and ignore cases with plausible
deniability. In other words, many subtle or well-disguised
code copying incidents go undetected or ignored under
current practices. Other studies confirm this lower bound,
with some as high as 75%. The true incidence of plagiarism
is thus suspected to be higher, posing a serious threat to the
fairness and educational validity of programming assessments
and CS degrees.”This quotation indicates that the level of
plagiarism in computer science education is considerably high
and often not fully detected, since most existing systems are
limited to identifying textual similarities. Therefore, code
plagiarism identificatio requires a more contextual and
semantic approach rather than merely comparing character-
or token-level similarities.

A number of methods have been developed to detect source
code similarity; however, each has its own limitations.
Traditional approaches such as Winnowing and TF-IDF with
Cosine Similarity [1], [2], [22] are capable of identifying
textual similarities but fail to capture the semantic and
functional meaning of programs [9]. These systems operate
only at the lexical level, making them easily deceived by

http://jurnal.polibatam.ac.id/index.php/JAIC

mailto:111202214109@mhs.dinus.ac.id
mailto:novita.kn@dsn.dinus.ac.id
https://creativecommons.org/licenses/by-sa/4.0/

3080

e-ISSN: 2548-6861

syntactic modifications that do not alter the underlying
program logic [12], [14].Recent studies have shown that deep
learning—based approaches can overcome these limitations by
understanding the functional context and semantic
relationships between lines of code. Models such as the
Siamese Network have proven effective in comparing code
representations that convey similar meanings despite
differences in structure or writing style [3], [18]. Meanwhile,
pre-trained models such as CodeBERT are designed to
comprehend semantic representations across programming
languages, producing embeddings that are robust to variations
in syntax and enabling more accurate identificatio of code
similarity [4], [6], [11], [20].

This study identifies source code plagiarism using a deep
learning—based approach with a focus on analyzing
programming style (coding style). The dataset consists of
1,000 source code projects collected from GitHub
repositories, covering five major programming languages:
Python, Java, JavaScript, TypeScript, and C++. The data are
divided into 700 training samples, 150 validation samples,
and 150 testing samples to ensure result generalization.The
system process comprises four main stages: (1) code
collection and preprocessing, including the removal of
comments, license headers, and structural normalization; (2)
semantic representation using CodeBERT with a hidden size
of 768 and 12 attention heads; (3) mapping of the two
representations into a lower-dimensional vector space using a
Siamese Network architecture with contrastive loss; and (4)
calculation of similarity levels using cosine similarity
values.The system produces outputs in the form of a similarity
percentage between two code segments along with a status
label “plagiarism detected” or “no plagiarism detected.”
Experimental results demonstrate that this approach can
effectively measure semantic code similarity with high
accuracy and low error rates, while also reinforcing the
potential of programming style analysis as a unique digital
identity to support academic integrity.

In general, the identification system operates by uploading
two or more program code files, which then undergo a
preprocessing stage to remove comments, excessive spaces,
and irrelevant string literals, as well as to normalize variable
and function names to reduce lexical bias. Subsequently, the
cleaned code is tokenized using CodeBERT’s built-in
tokenizer. The feature extraction stage maps the tokens into
high-dimensional vector representations that capture both
syntactic and semantic information. The extracted vectors are
then processed by a Siamese Network to compute the
similarity level between code snippets, producing similarity
scores ranging from 0 to 1. The final stage presents the results
in the form of a similarity percentage along with a plagiarism
status label.

The objective of this study is to develop an NLP-based
source code plagiarism identification system that integrates
CodeBERT and a Siamese Network to identify code
similarity even when modifications are made to programming
style aspects such as variable renaming, comment insertion,

or syntactic reformatting. The system is designed to generate
embeddings that capture both syntactic and semantic
information, directly compare pairs of code snippets to obtain
similarity scores, and evaluate the effectiveness of the
proposed method on a multi-language programming dataset.
Accordingly, this research is expected to assist lecturers and
academic institutions in detecting indications of source code
plagiarism and upholding academic integrity within higher
education environments.

II. METHODS

This research is designed with a systematic workflow
consisting of several main stages, starting from data collection
and code preprocessing to feature extraction, model training,
and evaluation. Each stage plays a crucial role in establishing
a solid methodological foundation to ensure results that are
accurate, measurable, and reproducible.

Training
70%

Testing
15%

Split Data

spasi berlebih

Data Collection
komentar

Menghapus komentar
multiline
single-line
Menghapus Menghapus baris
di awal o
file usinglexport

[Hasil]-—[Evaluasi]1—{ Training]

Figure 1. Research workflow

Feature Extraction
With CODEBERT

Projection With
Siamese Network

To provide an overview of the research workflow, Figure
1 presents the flowchart of the proposed research
methodology. The diagram visually illustrates the
relationships between each stage, facilitating the reader’s
understanding of the entire process—from raw data collection
to the evaluation of the plagiarism identification model.

A. Data Collection and Preparation

The dataset was obtained from public GitHub repositories
using the GitHub API with token-based authentication. The
search focused on simple algorithms such as Fibonacci,
Greatest Common Divisor (GCD), Least Common Multiple
(LCM), calculator, and sorting algorithms, implemented in
five popular programming languages: Python, Java,
JavaScript, TypeScript, and C++.

Each retrieved file was centrally stored in the directory
/content/drive/MyDrive/Jurnal/dataseyrrts2. The total dataset
initially contained 1,000 source code files, each exhibiting
diverse structures and coding styles. However, after the data
cleaning process, 996 files remained.

For experimental purposes, code pairs were divided into
two categories:

e Plagiarized pairs — code pairs that share identical logic
or algorithms but differ in writing style, such as variable
renaming, indentation changes, or the addition of
comments.

JAIC Vol. 9, No. 6, December 2025: 3079 — 3086

JAIC e-ISSN: 2548-6861 3081
e Non-plagiarized pairs — code pairs with different TABLE IT
functions and logical structures, derived from non- BEFORE AND AFTER COMMENT REMOVAL
equivalent algorithm implementations. Before After
The pairing process was conducted semi-manually, # #
considering algorithmic similarity and program logic # Copyright (c) 2024 # Copyright (c) 2024
structure rather than mere character-level resemblance. This # License: MIT # License: MIT
process involved analyzing the functional context and))
execution sequence of the programs to ensure that the tmport os) tmport os
plagiarized pairs authentically represented conceptual import sys # system library import sys # system
similarity, while the non-plagiarized pairs reflected clear " library
semantic differences. Fungsi untuk menghitung def factorial(n): #
TABLE I faktorial fungsi utama
DATASET INFORMATION dengan metode rekursif ifn==0:
" return 1
No Programming Start Updated Total else:
Language Year Year Files def factorial(n): # fungsi utama return n *
ifn==0: factorial(n-1) # rekursi

1 Python 2020 2025 387 return 1

2 Typescript 2020 2025 239 else: print(factorial(5)) #

3 Java 2020 2025 220 return n * factorial(n-1) # | test

4 Javascript 2020 2025 143 rekursi

5 C++ 2022 2024 10

Total Files 1000 print(factorial(5)) # test
B. Pra-Pemrosesan Data TABLEIII
The preprocessing stage aimed to ensure format BEFORE AND AFTER LICENSE HEADER REMOVAL

consistency and reduce noise without removing distinctive
stylistic features of the source code. A light cleaning approach
was applied, consisting of the following steps.

1. Comment Removal
The first step was to remove comments from the code.

Comments were categorized into two types:
e Multi-line comments, such as /* ... */, """..

mom

nn
. >

or

e Single-line comments, suchas// ..., # ..., or -- ...
Comments were removed because they serve only as
decorative explanations that do not affect the core logic of the
program. Moreover, comments can easily be manipulated to
disguise plagiarism without changing the execution flow.
By removing comments, the analysis focuses on executable
code, leading to more objective identification results.

2. License Header Removal

The second step was to remove license headers, which
typically appear at the beginning of source files—usually
within the first ten lines. These headers often contain
keywords such as copyright, license, MIT, Apache, or
GPL.License information was excluded because it is
irrelevant to a programmer’s coding style and often identical
across many projects, potentially creating false
similarities.By removing license headers, the system can
better focus on the unique stylistic aspects of each
programmer’s code.

Before After
import 0s
Copyright (c) 2024 import sys
License: MIT

def factorial(n):
import os ifn==0:
import sys # system library return 1

else:

m

return n *

Fungsi untuk factorial(n-1)

faktorial
dengan metode rekursif

m

menghitung

print(factorial(5))

def factorial(n): # fungsi utama
ifn==0:
return 1
else:
return n * factorial(n-1) #
rekursi

print(factorial(5)) # test

3. Removal
Statements

The next step was to remove lines containing external
library declarations, such as import, from, include, require,
using, and export. These lines do not contribute to the
program’s logical writing style but merely indicate
dependencies. Since import patterns tend to be highly
uniform, they were considered noise in the stylistic
analysis.By eliminating these statements, preprocessing

of Import/Include/Require/Using/Export

Identification of Source Code Plagiarism Using a Natural Language Processing (NLP) Approach Based on Code Writing
Style Analysis (Muhammad Ilham Akbar 1, Novita Kurnia Ningrum)

3082

e-ISSN: 2548-6861

became more effective in highlighting features that truly
reflect the programmer’s unique coding style.

TABLE IV
BEFORE AND AFTER IMPORT/INCLUDE/REQUIRE/USING/EXPORT
REMOVAL
Before After
def factorial(n):
Copyright (c) 2024 ifn==0:
License: MIT return 1
else:
import os return n ¥

import sys # system library factorial(n-1)

" print(factorial(5))
Fungsi untuk menghitung faktorial
dengan metode rekursif

"m

def factorial(n): # fungsi utama
ifn==0:
return 1
else:
return n * factorial(n-1) # rekursi

print(factorial(5)) # test

4. Whitespace Normalization

The fourth step involved whitespace normalization. All
excessive spaces, tabulations, and consecutive blank lines
were reduced to a single space or a single blank line.
The purpose of this step was to minimize formatting
differences that are purely cosmetic, such as indentation
variations, line spacing, or extra spaces.Through
normalization, codes with different visual formats but
identical logic were treated as equivalent, preventing
superficial differences that do not actually reflect distinct
programming styles.

TABLE V
BEFORE AFTER NORMALISASI SPASI

Before After
== def factorial(n):
Copyright (c) 2024 ifn==0:
License: MIT return 1
else:

import 0s return n *
import sys # system library factorial(n-1)

print(factorial(5))

Fungsi untuk menghitung faktorial
dengan metode rekursif

def factorial(n): # fungsi utama
ifn==0:
return 1
else:
return n * factorial(n-1) # rekursi

print(factorial(5)) # test

5. Preservation of Core Writing Style

The final stage focused on preserving the authenticity of
the programmer’s writing style. Preprocessing intentionally
retained variable and function names such as myVariable,
temp, or calculateAverage because naming choices reflect an
individual’s stylistic tendencies.Moreover, the code structure,
including the order of statements, looping patterns,
conditional expressions, and operator styles (e.g., ++i vs i++),
was preserved. Even unused library imports were not
removed if they indicated habitual patterns.Thus,
preprocessing only removed irrelevant elements comments,
license headers, import statements, and redundant spaces
while maintaining the original stylistic features of the source
code.

TABLE VI

BEFORE AND AFTER PRESERVATION OF WRITING STYLE
Before After
def factorial(n):
Copyright (c) 2024 ifn==0:
License: MIT return 1

else:
import 0s return n *
import sys # system library factorial(n-1)
print(factorial(5))

m

Fungsi untuk menghitung faktorial
dengan metode rekursif

def factorial(n): # fungsi utama
ifn==0:
return 1
else:
return n * factorial(n-1) # rekursi

print(factorial(5)) # test

After the cleaning and normalization stages, the dataset
was divided into three subsets using the train test split
function from the scikit-learn library, with proportions of
70% training, 15% testing, and 15% validation, and the
parameter random_state=42 to ensure reproducibility.

Data splitting was performed on the preprocessed source
code level, rather than on the embedding representations, to
preserve the distribution of coding styles and algorithmic
complexity across all subsets.

This strategy aligns with the principles outlined by Joseph
and Vakayil [7], who argue that there is no universal split
ratio—the optimal proportion depends on dataset size and
model complexity to minimize generalization error.

Furthermore, the CodeXGLUE benchmark framework [8]
adopts similar approaches in various tasks, such as code clone
identificatio and code summarization, ensuring fair and
comparable model evaluation across studies.

JAIC Vol. 9, No. 6, December 2025: 3079 — 3086

JAIC e-ISSN: 2548-6861

3083

Such data-splitting strategies have become a standard
practice in deep learning experiments on source code [4], [6],
[11],[18].

Therefore, the 70:15:15 split was chosen as it provides a
balanced trade-off between training size and evaluation
reliability, enabling the model to capture diverse writing
styles while maintaining robust validation and testing
performance.

C. Model Architecture and Algorithm

This study employed a deep learning approach based on
CodeBERT + Siamese Network to detect source code
similarity.

1. Feature Extraction Using CodeBERT

Each code snippet was tokenized using the built-in
tokenizer from CodeBERT (microsoft/codebert-base).
The model generated 768-dimensional embeddings with the
following parameters:

e Hidden size: 768

e Layers: 12

e Attention heads: 12

e Max token length: 512

e Mode: partial fine-tuning — the final layer of
CodeBERT is fine-tuned for task-specific adaptation
while maintaining the semantic stability of the
earlier frozen layers.

The [CLS] token embedding of each code snippet was used
as the vector representation h, then normalized using L2

normalization:
h

e=—
|hl,

,e e R768

where h is the raw [CLS] token vector and |h]]> is its L2
norm.This normalization step is standard in contrastive
learning pipelines [7].

Feature Vector (Hi)

t

Model Generated Features nas L s LTI [ol)

CodeBert —

Position Embeddings oo e (own) (o) (o) (eea) () (o) (e
+ + o+ + + + 4+ + 4+
Segment Embeddings e) [e . e L]
+ + + + o+ + o+ + +
Token Embeddings e e e e e e (e
4 Y " 4 Y Y 4 r 4
Token Sequence (OS] Tohen Tobeal Tekeal me w-i»x Token? Tokn2 g

] AST Representation
I
|

Code

Figure 2. Workflow of vector embedding computation

2. Projection Using Siamese Network

Two embedding vectors (e: and e2) were passed through
two identical branches of a Siamese Network with the
following architecture:

Linear (768—256) — ReLU — Dropout(0.3)
—LinearLayer(256—128).

Both branches share weights (shared parameters).
The output is a 128-dimensional latent vector representing the
final semantic representation for each code snippet.

3. Training with CosineEmbedding Loss

The model was trained using CosineEmbeddingLoss,
which encourages similar code vectors to be close together

and dissimilar vectors to move farther apart.
The loss function is defined as:
1-S (z1,22) y=1 (mirip)

L(x1,X2,y) = {

max(0,S(z1,zz)-m), y= —1 (tidak mirip)

where z: and z: are the latent vectors of code pairs, and m
is the margin for dissimilar pairs.

4. Cosine Similarity Evaluation and Thresholding

After training, the similarity between two code snippets
was measured using cosine similarity:

Zq .23

[1Z1 122

S(z41,2,) =

A similarity score S > 0.80 was categorized as plagiarized,
while lower scores were considered non-plagiarized.Model
performance was evaluated using accuracy, precision, recall,
and Fl-score, along with error analysis to identify false
positives and false negatives. To ensure evaluation
robustness, the dataset was split into training (70%),
validation (15%), and test (15%) sets, with the validation set
used for threshold optimization and early stopping guidance.

II1. RESULTS AND DISCUSSION

A. CodeBERT Mechanism and Parameters

CodeBERT operates based on masked language modeling
(MLM) and replaced token detection (RTD) to learn
relationships between program tokens and their semantic
contexts.In this study, the base model microsoft/codebert-
base was used with the parameters shown below.

TABLE VII
MODEL PARAMETER
Parameter Value Description

Model Type CodeBERT | Transformer with 12 layers,
(base) + 768 hidden size, and Siamese
Siamese head
Network

Tokenizer RobertaTok | Tokenizer from
enizer microsoft/codebert-base

Identification of Source Code Plagiarism Using a Natural Language Processing (NLP) Approach Based on Code Writing
Style Analysis (Muhammad Ilham Akbar 1, Novita Kurnia Ningrum)

3084

e-ISSN: 2548-6861

Max 512 Maximum token length per
Sequence code snippet

Length

Batch Size 8 Number of code pairs per

iteration

Learning Rate | 2e-5 Optimizer: AdamW

Epoch 5 Number of training cycles

Loss Function | CosineEmb
eddingLoss

Distinguishes between
plagiarized and non-
plagiarized pairs
Dimension of the Siamese

Hidden Dim 256

(Siamese) hidden layer

Output Dim 128 Dimension of the Siamese
(Siamese) output embedding
Dropout Rate | 0.3 Dropout applied to the

Siamese head

Training Partial Fine- | The final layer of CodeBERT

Strategy tuning is fine-tuned for task
adaptation

Similarity 0.80 Classification threshold

Threshold

CodeBERT produced 768-dimensional embeddings that
capture writing style, structure, and logical meaning of source
code.These embeddings were then used as inputs for the
Siamese Network to calculate pairwise distances.

B. Siamese Network Mechanism

The Siamese Network receives two embeddings (embi,
emb:) from CodeBERT and computes the cosine similarity to
determine semantic similarity:

A-B
similarity (4, B) AT B
Similarity scores range from 0 to 1:
e 0 — dissimilar
e 1 — highly similar

The model is trained to yield high similarity scores for
plagiarized pairs and low scores for non-plagiarized ones.
The final output is a similarity percentage, which is then
labeled as “Plagiarized” or “Non-plagiarized” based on the
chosen threshold.

C. Threshold Determination and Rationale
The threshold value of 0.80 was selected empirically after
testing multiple thresholds from 0.4 to 0.9.

TABEL VIII
MULTI-THRESHOLD EVALUATION OF THE CODEBERT-SIAMESE

MODEL
Threshold | Accuracy | Precision | Recall | F1-Score
0.20 0.946 0.899 0.998 0.946
0.25 0.946 0.905 0.998 0.949
0.30 0.946 0.905 0.998 0.949
0.35 0.946 0.905 0.998 0.949
0.40 0.945 0.904 0.996 0.948
0.45 0.949 0.910 0.996 0.951
0.50 0.951 0.914 0.996 0.953
0.55 0.952 0.916 0.996 0.954
0.60 0.954 0.919 0.996 0.956

0.65 0.954 0.926 0.987 0.956
0.70 0.955 0.932 0.982 0.956
0.75 0.960 0.940 0.982 0.961
0.80 0.964 0.952 0.978 0.964
0.85 0.963 0.964 0.962 0.963
0.90 0.965 0.981 0.948 0.964

Based on the evaluation results across multiple threshold
values, it can be concluded that a threshold of 0.80 represents
the optimal value for detecting source code plagiarism. This
selection is grounded in achieving an ideal balance between
precision and recall, which is crucial in academic contexts [1],
[5]. A precision value of 95.2% at this threshold is particularly
important for minimizing false positives, which could have
serious implications for student integrity [5], [23].
Meanwhile, a recall value of 97.8% indicates the system’s
strong ability to detect the majority of actual plagiarism cases
(31, [18].

An Fl-score of 96.5% at the 0.80 threshold reflects a
harmonious balance between precision and recall, following
the principle of multi-objective optimization recommended in
similarity detection studies [16]. Previous research suggests
that too low a threshold often leads to high false-positive
rates, while too high a threshold risks missing subtle
plagiarism cases [1], [12]. The chosen threshold of 0.80
provides an optimal solution and aligns with related studies
recommending thresholds within the 0.75-0.85 range for code
plagiarism identificatio in educational settings [14], [15].

Therefore, the 0.80 threshold was selected as the optimal
decision boundary, balancing accuracy and practicality in the
implementation of a plagiarism identificatio system for source
code, and adopted as the standard value in this study.

D. Comparison with AST- and TF-IDF-Based Methods
To highlight the research gap, three baseline approaches

were compared:
Table IX
COMPARISON OF IDENTIFICATION RESULTS ACROSS METHODS

Method Accuracy | Precision | Recall | F1-
Score
winnowing 0.538 1.000 0.074 | 0.062
TF-IDF + Cosine | 0.553 1.000 0.0187 | 0.122
AST Edit | 0.502 0.000 0.000 | 0.000
Distance
CodeBERT- 0.964 0.952 0.978 | 0.964
Siamese
Analysis:

e The AST-based approach only -captures syntactic
structures and fails to detect cases where identical logic
is written in a different order.

e The TF-IDF approach relies solely on token-level
similarity and cannot understand semantic meaning.

e The CodeBERT—Siamese approach, on the other hand,
captures both semantics and stylistic patterns, making it
more adaptive to variations in coding styles.

JAIC Vol. 9, No. 6, December 2025: 3079 — 3086

JAIC

e-ISSN: 2548-6861

3085

E. Error Analysis

Based on test set results, the model produced an error rate
0f4.6%, corresponding to 7 misclassifications out of 150 code
pairs. These errors fall into two main categories:

1. False Positives (FP) — cases where two code snippets
were classified as similar but were actually different.
These errors often stem from structural similarities or
shared templates in lab assignments [1], [2], where
syntax-based similarity methods frequently misinterpret
structural resemblance as semantic similarity.

2. False Negatives (FN) — cases where two genuinely
similar code snippets were not detected as such. This
typically occurs due to significant alterations in variable
names, function orders, or comments, which modify the
token representation and reduce semantic similarity [4],
[12]. Such findings align with previous studies noting
that surface-level structural changes can obscure
underlying semantic equivalence.

The 0.80 threshold was determined through an empirical
trade-off between precision (0.952) and recall (0.978). This
value offers an optimal equilibrium between high recognition
capability and low classification error, consistent with
established guidelines for optimal threshold selection in
Siamese networks [16].

Overall, the error rate below 5% demonstrates that the
proposed model achieves high reliability in detecting
semantic similarities between code fragments—consistent
with recent studies on vector-based semantic plagiarism
detection [6], [11], [20], [21].

IV. CONCLUSION

Based on the conducted experiments and analysis, it can be
concluded that the CodeBERT-Siamese Network—based
source code plagiarism identificatio system has been
successfully developed, demonstrating high effectiveness in
identifying semantic similarities between code fragments.
The model achieved an accuracy of 96.4% with an error rate
of 4.6% on a dataset comprising 996 pairs of multilingual
source code.

The light cleaning approach applied during data
preprocessing proved effective in maintaining essential
coding-style characteristics while removing decorative or
irrelevant elements such as comments, license headers, and
import declarations. This strategy allowed the model to focus
on logical structure and stylistic writing patterns, enhancing
semantic representation accuracy.

Experimental results confirmed that the optimal threshold
value of 0.80 provided the best balance between precision
(95.2%) and recall (97.8%), minimizing false positives while
maintaining sensitivity to subtle plagiarism cases. These
findings highlight the superiority of the proposed method
compared to traditional approaches like Winnowing and TF-
IDF, which rely primarily on lexical similarity and fail to
capture contextual semantics.

The integration of CodeBERT as a semantic feature
extractor with a Siamese Network as a similarity learning
model provides a significant advantage in handling syntactic
variations and stylistic modifications. This combination
makes the system more robust against plagiarism obfuscation
techniques, such as variable renaming, comment insertion, or
formatting changes.

In summary, this research contributes to the development
of an adaptive and intelligent plagiarism identificatio system,
with strong potential applications in academic integrity
assurance, particularly within computer science and
informatics education.

REFERENCES

[1] M. S. Ramli, S. Cokrowibowo, and M. F. Rustan, “Uji Plagiarism
pada Tugas Mahasiswa Menggunakan Algoritma Winnowing,” J.
Appl. Comput. Sci. Technol., vol. 2, no. 2, pp. 108-112, 2021, doi:
10.52158/jacost.v2i2.177.

[2] I. G. A. Eka Putra and I. W. Supriana, “Deteksi Plagiarisme Source
Code Tugas Mahasiswa Menggunakan Algoritma Cosine
Similarity Dan Pembobotan TF-IDF,” J. Nas. Teknol. Inf. dan Apl.,
vol. 1, no. 1, p. 575, 2022, [Online]. Available:
https://ojs.unud.ac.id/index.php/jnatia/article/view/92871

3] Di. K. Tankala, T. Venugopal, and B. Vikas, “Java Source Code
Similarity Detection Using Siamese Networks,” J. Theor. Appl. Inf.
Technol., vol. 100, no. 17, pp. 5507-5514, 2022.

[4] T. Sonnekalb, B. Gruner, C. A. Brust, and P. Mader,
“Generalizability of Code Clone Detection on CodeBERT,” in
ACM International Conference Proceeding Series, Association for
Computing Machinery, Sep. 2022. doi: 10.1145/3551349.3561165.

[5] M. A. Pratiwi and N. Aisya, “Fenomena plagiarisme akademik di
era digital,” Publ. Lett., vol. 1, no. 2, pp. 16-33, 2021, doi:
10.48078/publetters.v1i2.23.

[6] S. Sahar, M. Younas, M. M. Khan, and M. U. Sarwar, “DP-CCL:
A Supervised Contrastive Learning Approach Using CodeBERT
Model in Software Defect Prediction,” IEEE Access, vol. 12, no.

January, pp- 22582-22594, 2024, doi:
10.1109/ACCESS.2024.3362896.
[7] V. R. Joseph and A. Vakayil, “SPlit: An Optimal Method for Data

Splitting,” Technometrics, vol. 64, no. 2, pp. 166176, 2022, doi:
10.1080/00401706.2021.1921037.

[8] S. Lu et al, “CodeXGLUE: A Machine Learning Benchmark
Dataset for Code Understanding and Generation,” Adv. Neural Inf.
Process. Syst., 2021.

[9] M. Sajid, M. Sanaullah, M. Fuzail, T. S. Malik, and S. M.
Shuhidan, “Comparative analysis of text-based plagiarism
detection techniques,” PLoS One, vol. 20, no. 4 April, pp. 1-28,
2025, doi: 10.1371/journal.pone.0319551.

[10] V. R. Joseph, “Optimal ratio for data splitting,” Stat. Anal. Data
Min., vol. 15, no. 4, pp. 531-538, 2022, doi: 10.1002/sam.11583.

[11] S. Arshad, S. Abid, and S. Shamail, “CodeBERT for Code Clone
Detection: A Replication Study,” Proc. - 2022 IEEE 16th Int.
Work. Softw. Clones, IWSC 2022, pp. 39-45, 2022, doi:
10.1109/IWSC55060.2022.00015.

[12] F. Ebrahim and M. Joy, “Semantic Similarity Search for Source
Code Plagiarism Detection: An Exploratory Study,” Annu. Conf.
Innov. Technol. Comput. Sci. Educ. ITiCSE, vol. 1, pp. 360-366,
2024, doi: 10.1145/3649217.3653622.

[13] A. Fedele, R. Guidotti, and D. Pedreschi, Explaining Siamese
networks in few-shot learning, vol. 113, no. 10. Springer US, 2024.
doi: 10.1007/s10994-024-06529-8.

[14] N. Gandhi, K. Gopalan, and P. Prasad, “A Support Vector Machine
based approach for plagiarism detection in Python code
submissions in undergraduate settings,” Front. Comput. Sci., vol.
6, 2024, doi: 10.3389/fcomp.2024.1393723.

Identification of Source Code Plagiarism Using a Natural Language Processing (NLP) Approach Based on Code Writing
Style Analysis (Muhammad Ilham Akbar 1, Novita Kurnia Ningrum)

3086

[15]

[16]

[17]

[18]

[19]

e-ISSN: 2548-6861

E. E. Htet et al., “Code Plagiarism Checking Function and Its
Application for Code Writing Problem in Java Programming
Learning Assistant System ,” Analytics, vol. 3, no. 1, pp. 46-62,
2024, doi: 10.3390/analytics3010004.

B. Kriuk and F. Kriuk, “Multi-Objective Optimal Threshold
Selection for Similarity Functions in Siamese Networks for
Semantic Textual Similarity Tasks,” 2024, doi:
10.20944/preprints202407.0020.v1.

P. T. Nguyen, J. Di Rocco, C. Di Sipio, R. Rubei, D. Di Ruscio,
and M. Di Penta, “GPTSniffer: A CodeBERT-based classifier to
detect source code written by ChatGPT,” J. Syst. Softw., vol. 214,
no. August 2023, p. 112059, 2024, doi: 10.1016/j.js5.2024.112059.
B. Wan, S. Dong, J. Zhou, and Y. Qian, “SJBCD: A Java Code
Clone Detection Method Based on Bytecode Using Siamese Neural
Network,” Appl. Sci., vol. 13, no. 17, 2023, doi:
10.3390/app13179580.

M. A. Yahya and D. K. Kim, “CLCD-I: Cross-Language Clone
Detection by Using Deep Learning with InferCode,” Computers,
vol. 12, no. 1, pp. 1-11, 2023, doi: 10.3390/computers12010012.

[20]

(21]

[22]

(23]

[24]

M. Zubkov, E. Spirin, E. Bogomolov, and T. Bryksin, Evaluation
of Contrastive Learning with Various Code Representations for
Code Clone Detection, vol. 1, no. 1. Association for Computing
Machinery, 2022. doi: 10.2139/ssrn.4159812.

R. Maertens et al., “Discovering and exploring cases of educational
source code plagiarism with Dolos,” SoftwareX, vol. 26, no. May,
p. 101755, 2024, doi: 10.1016/j.s01tx.2024.101755.

A. Y. Bramantya, T. Hasanuddin, and F. Umar, “Analisis Metode
Winnowing Dalam Pendeteksian Plagiarisme Judul,” Bul. Sist. Inf.
dan Teknol. Islam, vol. 3, no. 4, pp. 268-273, 2022, doi:
10.33096/busiti.v3i4.1469.

E. Dickey, “The Failure of Plagiarism Detection in Competitive
Programming,” 2025, [Online]. Available:
http://arxiv.org/abs/2505.08244

W. Yang, “Identification and Prevention of Code Open Source
Quotation and Plagiarism — Innovative Solutions to Enhance Code
Plagiarism Detection Tools,” Acad. J. Comput. Inf. Sci., vol. 7, no.
1, pp. 65-71, 2024, doi: 10.25236/ajcis.2024.070110.

JAIC Vol. 9, No. 6, December 2025: 3079 — 3086

