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 Flood risk prediction is a crucial step in disaster mitigation. This study optimizes the 

Extreme Gradient Boosting (XGBoost) algorithm using the Particle Swarm 

Optimization (PSO) method to improve prediction accuracy. The process includes 

data cleaning, normalization, and classification of risk levels into low, medium, and 

high. The XGBoost model is trained both before and after parameter optimization of 

n_estimators, max_depth, and learning_rate. Before optimization, the model 

achieved 93% accuracy but struggled to identify minority classes. After optimization 

with PSO, accuracy increased to 97%, with the recall for the low-risk class 

improving from 21% to 57%. The optimized model also demonstrated more stable 

performance compared to Support Vector Machine (SVM) and Random Forest. 

These findings indicate that the combination of XGBoost and PSO can provide more 

accurate and efficient flood risk predictions. 
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I. INTRODUCTION 

Flooding is one of the most frequent hydrometeorological 

disasters, causing significant social, economic, and ecological 

impacts in various countries, including Indonesia. 

Uncontrolled urbanization, environmental degradation, and 

increased rainfall intensity due to climate change have 

exacerbated flood risks in vulnerable areas [1], [2]. 

Furthermore, future flood risk projections based on the Shared 

Socioeconomic Pathways (SSP) climate scenarios indicate a 

global trend of increasing flood-prone areas [3]. 

Consequently, flood risk mapping and prediction have 

become urgent needs for early warning systems and disaster 

mitigation efforts. 

Recent evidence indicates that climate change has 

intensified rainfall patterns, leading to an increase in flood 

occurrences worldwide. In Indonesia, these events are 

becoming more frequent in rapidly urbanized regions where 

inadequate drainage and land-use changes intensify flood 

impacts. This situation underlines the urgent need for adaptive 

flood prediction models that can respond to evolving 

environmental conditions. 

Conventional models such as Support Vector Machine 

(SVM) and Random Forest often struggle with data 

imbalance and require manual parameter tuning, reducing 

their generalization capability. Hence, there remains a need 

for a more efficient approach capable of optimizing 

parameters automatically while maintaining both accuracy 

and computational efficiency. To address this limitation, this 

study integrates Particle Swarm Optimization (PSO) with 

Extreme Gradient Boosting (XGBoost) for improved flood 

risk prediction. 

However, conventional statistical-based prediction 

approaches often fail to capture the complex nonlinear 

relationships among dynamic environmental factors [4]. On 

the other hand, machine learning algorithms have 

increasingly been utilized in hydrological disaster modeling 

due to their ability to handle large and complex datasets [5], 

[6]. One prominent algorithm in this field is Extreme Gradient 

Boosting (XGBoost), which is widely recognized for its high 

accuracy, robustness against overfitting, and flexibility in 

parameter tuning [7]. 

Nevertheless, the performance of XGBoost is highly 

dependent on the configuration of its hyperparameters, such 

as the number of decision trees (n_estimators), maximum 

depth (max_depth), and learning rate (learning_rate) [8]. To 

address this challenge, optimization methods such as Particle 

Swarm Optimization (PSO) have been adopted to select 

optimal parameter configurations. PSO is a swarm 

intelligence algorithm capable of efficiently exploring 
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solution spaces and has been proven to improve classification 

performance across various domains, including flood risk 

prediction [9], [10]. 

Several studies have demonstrated that combining PSO 

with XGBoost yields superior performance compared to other 

algorithms, such as Random Forest, Support Vector Machine 

(SVM), or k-Nearest Neighbor (k-NN) in flood risk 

classification tasks [11], [12]. Other research has also 

explored boosting model optimization through alternative 

approaches, such as the Fick’s Law Algorithm (FLA), for 

urban flood mapping with competitive results [13]. 

Furthermore, the PSO-XGBoost hybrid approach has been 

recognized for its advantages in scenarios with limited data or 

class imbalance, which are commonly encountered in 

historical flood datasets [14]. 

Based on the aforementioned background, this study aims 

to develop a flood risk prediction system by utilizing the 

XGBoost algorithm optimized with PSO. This model is 

expected to classify flood risk into three categories: low, 

medium, and high, while improving the accuracy in detecting 

minority classes. The evaluation is conducted using 

multiclass classification metrics, including accuracy, 

precision, recall, and F1-score. 

The main contribution of this study lies in the application 

of PSO to optimize XGBoost hyperparameters within the 

context of flood risk classification based on complex 

environmental data. Additionally, this study emphasizes 

training efficiency and improved accuracy in detecting high-

risk classes, with the ultimate goal of supporting disaster 

mitigation systems and risk-based spatial planning. 

 

II. METHOD 

The overall research framework is illustrated in Figure 1, 

which integrates the parameter optimization process using 

Particle Swarm Optimization (PSO) with the classification 

model training using Extreme Gradient Boosting (XGBoost). 

 

A. Dataset 

The dataset was obtained from the public platform Kaggle, 

consisting of 50,000 rows of data and 21 environmental 

features, such as rainfall, soil moisture, temperature, drainage 

quality, and urbanization. These features have been widely 

used in previous studies for modeling flood risk in both spatial 

and temporal contexts [12], [15]. 

Flood risk classification is categorized into three levels: 

low (0), medium (1), and high (2) based on flood probability 

values. This categorization process was carried out using the 

binning technique, as commonly applied in similar research 

on flood hazard mapping [3], [16]. 

The dataset used in this study was obtained from a publicly 

available Kaggle repository containing 50,000 records and 21 

environmental attributes related to flood risk. These attributes 

include rainfall, temperature, humidity, wind speed, 

elevation, and soil characteristics. The dataset spans a multi-

year period from 2010 to 2020, representing various regional 

hydrometeorological patterns in Indonesia. All features were 

preprocessed using normalization and missing-value handling 

techniques before model training. 

 

 

 
 

Figure 1 Flowchart XGB-PSO 

 

B. Data Preprocessing 

The preprocessing stage began with data cleaning to 

remove duplicate entries and handle missing values. Next, 

normalization was applied to numerical features using the 

StandardScaler method to standardize data scales. This step is 

essential to ensure that the algorithm does not become biased 

toward features with large value ranges [13], [17]. 

Subsequently, the data was split into 80% training data and 

20% testing data, following best practices in machine 

learning. The class distribution within the dataset exhibited 

significant imbalance, with a dominance in the medium-risk 

class. Therefore, normalization techniques and proportional 

data splitting were crucial to maintain the model’s 

generalization capability [4]. 

 

C. XGBoost 

XGBoost is a tree-based boosting algorithm designed to 

produce highly accurate predictive models through an 

ensemble approach. In the initial phase, the XGBoost model 

was built using default parameters to establish a performance 

baseline. The parameters tuned include n_estimators, 

max_depth, and learning_rate, which directly affect the 

model’s generalization capacity [6], [7]. 

This model is well-known for its built-in regularization, 

which helps prevent overfitting, and its ability to support 

feature importance evaluation [8]. These advantages make 

XGBoost a popular algorithm for disaster classification based 
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on environmental data [14], [18]. The optimization process in 

XGBoost mathematically utilizes the following objective 

function: 

 

𝑜𝑏𝑗(𝜃) = ∑ 𝐿

𝑛

𝑖=1

(𝑦1 , 𝑦̂𝑖) + Ω(𝜃)                                               (1) 

Description:  

 

 

 

D. PSO (Particle Swarm Optimization) 

Particle Swarm Optimization (PSO) is an optimization 

algorithm inspired by the collective behavior of birds and fish, 

which is used to find the optimal values for the 

hyperparameters of XGBoost [9], [10]. It has been proven to 

be stable in handling climate and environmental data and is 

also applicable under imbalanced data conditions [19], [20]. 

In PSO, each particle has a position and velocity that are 

updated in every iteration using the following formula: 

 

𝑣𝑖  (𝑡) =  𝑣𝑖  (𝑡 − 1) + 𝑐1. 𝑟1   +   𝑐2. 𝑟2 (𝐺𝑏𝑒𝑠𝑡 − 𝑥𝑖(𝑡 − 1))  

                                                                                                       (2)         

Description:  

𝑣𝑖 (𝑡)        =      Velocity of particle i at iteration 𝑡 
 
 

𝑥𝑖              =      Position of particle i at iteration i    

𝑃𝑏𝑒𝑠𝑡                =      Best position of particle i so far    

𝐺𝑏𝑒𝑠𝑡         =      Global best position among all particles 

𝑐1.𝑐2         =      Acceleration constants 
 
 

𝑟1.𝑟2        =      Random numbers between 0 and 1 

 

In this study, PSO was implemented to optimize key 

XGBoost hyperparameters such as the number of estimators, 

maximum depth, and learning rate. The swarm consisted of 

10 particles and was iterated for a maximum of 5 generations. 

The objective of PSO was to minimize the classification error, 

where the fitness function was defined as the model’s 

validation loss. Through this iterative process, PSO guided 

the search toward the global optimum combination of 

parameters that yielded the best prediction accuracy. 

 

 

 

E. Evaluation 

In this stage, the performance of the applied algorithm is 

evaluated. The evaluation utilizes the Confusion Matrix, 

followed by the calculation of accuracy, recall, F1-score, and 

precision based on the applied algorithm and its performance 

measurement matrix. 

The hybrid PSO-XGBoost model was trained and validated 

using a 5-fold cross-validation scheme to ensure robust 

generalization across different data partitions. Each fold 

maintained the same class distribution to address potential 

data imbalance issues. 

All experiments were conducted using Python 

programming language on Google Colab. The 

implementation utilized open-source libraries including 

Scikit-learn for preprocessing and evaluation, XGBoost for 

model training, and PySwarms for PSO optimization. 

 

III. RESULTS AND DISCUSSION 

A. Preprocessing 

Before training and testing the prediction model, the data 

must first be prepared through several preprocessing stages. 

The purpose of this step is to ensure that the data is clean, 

standardized, and ready to be processed by machine learning 

algorithms. 

1. Data Cleaning 

The dataset was examined for the presence of missing 

values. The dataset used consists of 50.000 rows and 21 

features. After the validation process, no missing values were 

found in any of the columns. 

 

 
Figure 2 Dataset Before and After Cleaning 

Although no missing data were found, this step was still 

carried out to ensure the quality of the data to be used in the 

model. The presence of invalid or missing data could directly 

impact the model’s predictive performance, potentially 

leading to reduced accuracy or overfitting. 

 

𝑜𝑏𝑗(𝜃)                 =  The overall objective function to 

be minimized. 
∑ 𝐿𝑛

𝑖=1 (𝑦1 , 𝑦̂𝑖)     = The sum of the loss function  𝐿, 

which measures the difference be

tween the predicted value 𝑦̂𝑖  and t

he actual value 𝑦1 

Ω(𝜃)               = The regularization function that c

ontrols model complexity to prev

ent overfitting. 
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2. Data Normalization  

The normalization method used in this study is 

StandardScaler, which transforms each feature value based on 

the z-score method. Since this approach calculates the 

difference from the mean, the resulting transformed values 

may be negative, especially when the original values are 

below the mean. This behavior is normal and inherent in the 

standardization process. 

TABLE 3  

DATA BEFORE NORMALIZATION 

No 

Monsoo

n 

Intensit

y 

Topograph

y Drainage Urbanizatio

n 
… 

Flood 

Probabilit

y 

1 3 8 4 … 0.65 

2 8 4 3 … 0.45 

3 3 10 2 … 0.62 

… … … … … … 

4999

8 
4 

5 
6 

… 0.48 

4999

9 
7 

4 
3 

… 0.66 

5000

0 
3 

8 
5 

… 0.54 

 

TABLE 4  

DATA AFTER NORMALIZATION 

No 

Monsoo

n 

Intensit

y 

Topograph

y Drainage Urbanizatio

n 
… 

Flood 

Probabilit

y 

1 -0.41 1.05 0.03 … 0.91 

2 1.89 -0.70 -0.25 … -0.41 

3 -0.41 2.00 -0.78 … 0.74 

… … … … … … 

4999

8 
0.24 

-0.02 
0.44 

… -0.31 

4999

9 
1.37 

-0.70 
-0.25 

… 0.95 

5000

0 
-0.41 

1.05 
0.21 

… 0.01 

 

Based on the table, the scale of values across features has 

been standardized. This normalization process was conducted 

using the StandardScaler method, which converts each feature 

value into a z-score. This transformation is performed using 

the following formula: 

𝓏 =
𝓍 −  𝜇

𝜎
                                                                         (3) 

3. Flood Risk Label Categorization 

The flood risk labels in the initial dataset were in the form 

of continuous values (probabilities), ranging from 0.28 to 

0.73. To simplify the classification process, a binning method 

was applied to categorize the data into three classes: 

• Low Risk (0): 0.28 – 0.40 

• Moderate Risk (1): 0.41 – 0.55 

• High Risk (2): 0.56 – 0.73 

 

Figure 3 Distribution of Flood Risk Categories 

The majority of the data falls into the Moderate Risk 

category (83.3%), followed by High Risk (14.4%), and Low 

Risk (2.3%). This imbalanced distribution may affect the 

model’s performance, particularly in recognizing the minority 

classes. Therefore, the model evaluation in this study will 

place greater emphasis on metrics such as recall and F1-score. 

4. Splitting Data 

The dataset was divided into two parts: training data and 

testing data. The proportion used was 80% for training and 

20% for testing. From a total of 50,000 data rows available, 

this division resulted in 40,000 training data and 10,000 

testing data, as shown in Table 2 below: 

TABLE 5  

DISTRIBUTION OF TRAINING AND TESTING DATA 

Data Type Number of Data 

Training 10000 

Testing 40000 

 

B. Model Performance Evaluation of XGBoost Before and 

After PSO 

To measure the effectiveness of parameter optimization on 

the XGBoost model, evaluations were conducted using the 

metrics of accuracy, precision, recall, and F1-score. These 

evaluations were carried out both before and after the 

𝓏    = Normalized value (z-score result) 

𝓍    = Original feature value 

𝜇    = Mean of all values in the feature 

𝜎    = 
Standard deviation of the values in the 

feature 
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application of the Particle Swarm Optimization (PSO) 

algorithm. 

TABLE 6  
EVALUATION OF XGBOOST MODEL PERFORMANCE BEFORE AND AFTER 

PSO 

Metric Before PSO After PSO 

Accuracy 93% 97% 

Precission 89% 95% 

Recall 63% 81% 

F1 Score 70% 87% 

 

After being optimized with PSO, there was a significant 

improvement across all evaluation metrics. The 4% increase 

in accuracy indicates that the model became more precise in 

mapping flood risks. Furthermore, the improvement in recall 

demonstrates that the model became more sensitive in 

identifying flood risk cases, especially within minority classes 

that were previously often overlooked. 

The overall metric improvement demonstrates that PSO 

effectively discovered a more optimal set of hyperparameters 

for the XGBoost model. By minimizing classification errors 

through iterative parameter updates, PSO improved the 

model’s ability to generalize across different flood risk levels. 

The increase in recall, particularly for the minority class, 

reflects higher model sensitivity in recognizing less frequent 

flood events that were previously misclassified. 

C. Feature Importance 

After the XGBoost model was optimized using PSO, an 

analysis was conducted to evaluate the contribution weight of 

each feature using the feature importance method. This 

process aimed to identify which features had the most 

significant impact on flood risk prediction. 

 

 

Figure 4 Top 5 Feature Importance 

The graph illustrates that Rainfall is the dominant factor in 

the prediction, followed by the level of Urbanization and the 

quality of Drainage. This finding is logical, as areas with high 

rainfall and dense development tend to be more vulnerable to 

flooding. Meanwhile, features such as River Management and 

Soil Moisture also play an important role, as they influence 

the environment’s natural ability to absorb water. 

        Although the PSO–XGBoost model achieved stable 

results, several classification errors were still observed. Most 

misclassifications occurred in areas with high rainfall but no 

actual flooding. This condition is likely due to elevated terrain 

or efficient drainage systems, which prevent inundation even 

under heavy precipitation. These findings indicate that 

additional topographical and hydrological parameters could 

further enhance prediction accuracy. 

D. The Effect of Performance from PSO Result 

To examine the model's sensitivity to the number of 

decision trees, an experiment was conducted by increasing the 

n_estimators parameter value from 300 to 550. The other 

parameters (max_depth and learning_rate) were kept 

constant, as they showed no significant effect on accuracy 

during testing. 

 

 
Figure 5 Graph of the Effect of n_estimators Value on Accuracy 

The graph shows that increasing the n_estimators value 

directly impacts the improvement of the model’s accuracy. 

This can be technically explained by the fact that the more 

trees (estimators) are used, the greater the model’s 

opportunity to capture complex patterns within the data. 

However, after reaching around 500 estimators, the accuracy 

improvement began to slow down and tended to stagnate at 

97.01% when the value reached 550. This indicates that the 

model has reached an optimal point, where adding more trees 

only increases computation time without providing 

significant accuracy gains.  

E. Extebded Model Evaluation Using AP. Map AND FPR 

1. Macro Precision-Recal Curve Graph 

To complement the precision–recall evaluation, the 

Receiver Operating Characteristic (ROC) curve was also 

analyzed to examine the balance between true positive and 

false positive rates. The PSO–XGBoost model achieved an 
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average Area Under the Curve (AUC) score above 0.95 across 

all classes, indicating excellent discriminative performance in 

differentiating flood risk categories. 

 

 
Figure 6 Macro Precision–Recall and ROC Curve for Flood Risk 

Classification 

The Macro Precision-Recall (PR) Curve illustrates the 

relationship between precision and recall for each class. 

Classes 1 and 2 produce stable curves that approach the top-

right corner, indicating excellent performance. Class 0 shows 

a slight decline in the middle section, suggesting that the 

model is slightly less precise in distinguishing the low-risk 

class. However, overall, the model successfully maintains a 

good balance between precision and recall. 

  

2. Evaluation of Average Precision (AP) and Mean 

Average Precission (mAP) 

 
Figure 7 Average Precision (AP) per Class and Map 

 

TABLE 7  

AVERAGE PRECISION (AP) PER CLASS AND MEAN AVERAGE PRECISION 

(mAP) 
Kelas Nilai AP 

Kelas 0 85.09 

Kelas 1 99.80 

Kelas 2 97.78 

 

Additional evaluation was conducted using the Average 

Precision (AP) metric for each class, along with the mean 

Average Precision (mAP) as the overall average score. Based 

on the testing results, the AP scores for classes 0, 1, and 2 

were 85.09%, 99.80%, and 97.78%, respectively. The mean 

mAP reached 94.22%, indicating that the model does not only 

perform well for a single class but also demonstrates stability 

across all flood risk categories. The bar chart visualization 

shows that the AP score for class 1 is nearly perfect, while 

class 0 remains challenging due to its underrepresented data. 

The mAP line on the graph serves as a general reference for 

overall model performance. These results further reinforce the 

conclusion that the XGBoost model optimized with PSO is 

capable of delivering consistent and balanced multi-class 

classification performance. 

3. False Positive Rate (FPR) 

 

Figure 8 False Positive Rate (FPR) per Class 

The False Positive Rate (FPR) is calculated from the 

confusion matrix to determine how often the model 

incorrectly classifies a negative class as positive. The 

evaluation results show that the FPR for Class 1 is higher 

compared to Classes 0 and 2. This indicates that the model 

tends to misclassify instances of Class 1 slightly more often 

than the others. However, in general, the FPR values remain 

within acceptable limits and do not significantly impact the 

overall performance of the model. 

 

4. Combined Evaluation 

The model’s performance was evaluated using two 

complementary approaches to obtain a comprehensive 

understanding. First, a classical evaluation was performed 
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using metrics such as precision, recall, and F1-score, which 

are calculated based on the final predicted class against the 

actual labels using a confusion matrix. This method provides 

assessment based on a single classification decision threshold. 

 

 

Figure 9 Comparison of Model Evaluation per Class 

 
TABLE 8   

COMPREHENSIVE MODEL EVALUATION PER CLASS 

Kelas Precission Recall 
F1-

Score 
FPR 

AP 

Kelas 0 94.55 44.64 60.64 0.06% 85.09 

Kelas 1 95.75 99.42 97.55 21.52% 99.80 

Kelas 2 96.70 83.86 89.82 0.49% 97.78 

 

Second, a curve-based evaluation was conducted by 

calculating the Average Precision (AP) for each class and the 

overall Mean Average Precision (mAP). AP takes into 

account the area under the precision–recall curve, thereby 

reflecting the model’s performance across various prediction 

thresholds.  

The differences in scores resulting from the two 

approaches are expected due to the differing evaluation 

principles. Nonetheless, both methods consistently indicate 

that the model performance has improved and stabilized after 

the application of PSO-based optimization. 

Overall, the integration of traditional metrics such as 

accuracy, precision, recall, and F1-score with curve-based 

evaluations like AUC–ROC and mAP provides a broader 

view of model performance. The high and consistent values 

across all metrics confirm that the PSO–XGBoost approach 

not only improves accuracy but also ensures stability and 

robustness in multi-class flood risk prediction. 

5. Comparison with Other Algoriyhms 

The experiments were conducted on four classification 

models, namely XGBoost, XGBoost with PSO, SVM, and 

Random Forest. The evaluation results are presented using 

accuracy, precision, recall, and F1-score metrics, as shown 

table 9.  

 

TABLE 9  

PERFORMANCE COMPARISON OF EVALUATION METRICS BETWEEN 

ALGORITHMS 

Model Accuracy Precision 
Recall F1-

Score 

XGBoost 93% 89% 63% 70% 

XGBoost + PSO 97% 95% 81% 87% 

SVM 98% 94% 88% 91% 

Random Forest 83% 82% 55% 61% 

 

Although SVM achieved the highest accuracy and F1-

score, this model presents a drawback in terms of 

computational efficiency. The feature importance evaluation 

process using SVM can take more than 30 minutes, making it 

less ideal for real-time systems. In contrast, XGBoost 

optimized with PSO provides nearly comparable accuracy 

while offering superior time efficiency. With 97% accuracy, 

a high F1-score, and significantly faster execution time, this 

model is considered more stable and balanced. 

 
TABLE 10  

EXECUTION TIME COMPARISON BETWEEN MODELS 

Model Execution Time 

XGBoost 2 Seconds 

XGBoost + PSO 5 Minutes 30 Seconds 

SVM 2 Minutes 40 Seconds 

Random Forest 5 Seconds 

 

While SVM excels in terms of accuracy, the high 

computational cost becomes a significant concern. On the 

other hand, XGBoost + PSO offers a balance between high 

accuracy and shorter processing time compared to SVM, as 

well as more consistent results compared to Random Forest. 

This makes XGBoost + PSO the most practical model to be 

implemented in predictive systems that require both speed 

and accuracy simultaneously. 

 

IV. CONCLUSION 

This study successfully developed a flood risk prediction 

model using the XGBoost algorithm optimized through the 

Particle Swarm Optimization (PSO) method by searching for 

optimal values of the n_estimators, max_depth, and 

learning_rate hyperparameters, resulting in an accuracy 

improvement of up to 97.01%. In addition to accuracy, the 

model's performance enhancement is also reflected in the 

increase of the minority class recall from 21% to 57%, as well 

as the F1-score from 41% to 70%. Further evaluation shows 

the Average Precision (AP) scores per class reached 85.09%, 

99.80%, and 97.78%, with a mean Average Precision (mAP) 

of 94.22%. Moreover, the False Positive Rate (FPR) values 

were very low for Classes 0 and 2. The Macro Precision–

Recall Curve visualization further confirms the model’s stable 

performance in multi-class classification. When compared to 

other algorithms such as SVM and Random Forest, the 

XGBoost + PSO model offers a balanced performance 

between classification accuracy and computational 

efficiency, making it highly potential for implementation in 
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real-time flood detection systems. For future research, this 

model can be further explored using other optimization 

methods, tested on real-time datasets, and applied to early 

warning systems that adapt to climate change and 

environmental conditions.  
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