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Flood risk prediction is a crucial step in disaster mitigation. This study optimizes the
Extreme Gradient Boosting (XGBoost) algorithm using the Particle Swarm
Optimization (PSO) method to improve prediction accuracy. The process includes
data cleaning, normalization, and classification of risk levels into low, medium, and
high. The XGBoost model is trained both before and after parameter optimization of
n_estimators, max depth, and learning rate. Before optimization, the model
achieved 93% accuracy but struggled to identify minority classes. After optimization
with PSO, accuracy increased to 97%, with the recall for the low-risk class
improving from 21% to 57%. The optimized model also demonstrated more stable
performance compared to Support Vector Machine (SVM) and Random Forest.
These findings indicate that the combination of XGBoost and PSO can provide more
accurate and efficient flood risk predictions.

This is an open access article under the CC—BY-SA license.

L. INTRODUCTION

Flooding is one of the most frequent hydrometeorological
disasters, causing significant social, economic, and ecological
impacts in various countries, including Indonesia.
Uncontrolled urbanization, environmental degradation, and
increased rainfall intensity due to climate change have
exacerbated flood risks in vulnerable areas [1], [2].
Furthermore, future flood risk projections based on the Shared
Socioeconomic Pathways (SSP) climate scenarios indicate a
global trend of increasing flood-prone areas [3].
Consequently, flood risk mapping and prediction have
become urgent needs for early warning systems and disaster
mitigation efforts.

Recent evidence indicates that climate change has
intensified rainfall patterns, leading to an increase in flood
occurrences worldwide. In Indonesia, these events are
becoming more frequent in rapidly urbanized regions where
inadequate drainage and land-use changes intensify flood
impacts. This situation underlines the urgent need for adaptive
flood prediction models that can respond to evolving
environmental conditions.

Conventional models such as Support Vector Machine
(SVM) and Random Forest often struggle with data
imbalance and require manual parameter tuning, reducing

their generalization capability. Hence, there remains a need
for a more efficient approach capable of optimizing
parameters automatically while maintaining both accuracy
and computational efficiency. To address this limitation, this
study integrates Particle Swarm Optimization (PSO) with
Extreme Gradient Boosting (XGBoost) for improved flood
risk prediction.

However, conventional statistical-based prediction
approaches often fail to capture the complex nonlinear
relationships among dynamic environmental factors [4]. On
the other hand, machine learning algorithms have
increasingly been utilized in hydrological disaster modeling
due to their ability to handle large and complex datasets [5],
[6]. One prominent algorithm in this field is Extreme Gradient
Boosting (XGBoost), which is widely recognized for its high
accuracy, robustness against overfitting, and flexibility in
parameter tuning [7].

Nevertheless, the performance of XGBoost is highly
dependent on the configuration of its hyperparameters, such
as the number of decision trees (n_estimators), maximum
depth (max_depth), and learning rate (learning_rate) [8]. To
address this challenge, optimization methods such as Particle
Swarm Optimization (PSO) have been adopted to select
optimal parameter configurations. PSO is a swarm
intelligence algorithm capable of efficiently exploring
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solution spaces and has been proven to improve classification
performance across various domains, including flood risk
prediction [9], [10].

Several studies have demonstrated that combining PSO
with XGBoost yields superior performance compared to other
algorithms, such as Random Forest, Support Vector Machine
(SVM), or k-Nearest Neighbor (k-NN) in flood risk
classification tasks [11], [12]. Other research has also
explored boosting model optimization through alternative
approaches, such as the Fick’s Law Algorithm (FLA), for
urban flood mapping with competitive results [13].
Furthermore, the PSO-XGBoost hybrid approach has been
recognized for its advantages in scenarios with limited data or
class imbalance, which are commonly encountered in
historical flood datasets [14].

Based on the aforementioned background, this study aims
to develop a flood risk prediction system by utilizing the
XGBoost algorithm optimized with PSO. This model is
expected to classify flood risk into three categories: low,
medium, and high, while improving the accuracy in detecting
minority classes. The evaluation is conducted using
multiclass classification metrics, including accuracy,
precision, recall, and F1-score.

The main contribution of this study lies in the application
of PSO to optimize XGBoost hyperparameters within the
context of flood risk classification based on complex
environmental data. Additionally, this study emphasizes
training efficiency and improved accuracy in detecting high-
risk classes, with the ultimate goal of supporting disaster
mitigation systems and risk-based spatial planning.

II. METHOD

The overall research framework is illustrated in Figure 1,
which integrates the parameter optimization process using
Particle Swarm Optimization (PSO) with the classification
model training using Extreme Gradient Boosting (XGBoost).

A. Dataset

The dataset was obtained from the public platform Kaggle,
consisting of 50,000 rows of data and 21 environmental
features, such as rainfall, soil moisture, temperature, drainage
quality, and urbanization. These features have been widely
used in previous studies for modeling flood risk in both spatial
and temporal contexts [12], [15].

Flood risk classification is categorized into three levels:
low (0), medium (1), and high (2) based on flood probability
values. This categorization process was carried out using the
binning technique, as commonly applied in similar research
on flood hazard mapping [3], [16].

The dataset used in this study was obtained from a publicly
available Kaggle repository containing 50,000 records and 21
environmental attributes related to flood risk. These attributes
include rainfall, temperature, humidity, wind speed,
elevation, and soil characteristics. The dataset spans a multi-
year period from 2010 to 2020, representing various regional

hydrometeorological patterns in Indonesia. All features were
preprocessed using normalization and missing-value handling
techniques before model training.
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Figure 1 Flowchart XGB-PSO

B. Data Preprocessing

The preprocessing stage began with data cleaning to
remove duplicate entries and handle missing values. Next,
normalization was applied to numerical features using the
StandardScaler method to standardize data scales. This step is
essential to ensure that the algorithm does not become biased
toward features with large value ranges [13], [17].

Subsequently, the data was split into 80% training data and
20% testing data, following best practices in machine
learning. The class distribution within the dataset exhibited
significant imbalance, with a dominance in the medium-risk
class. Therefore, normalization techniques and proportional
data splitting were crucial to maintain the model’s
generalization capability [4].

C. XGBoost

XGBoost is a tree-based boosting algorithm designed to
produce highly accurate predictive models through an
ensemble approach. In the initial phase, the XGBoost model
was built using default parameters to establish a performance
baseline. The parameters tuned include n_estimators,
max_depth, and learning rate, which directly affect the
model’s generalization capacity [6], [7].

This model is well-known for its built-in regularization,
which helps prevent overfitting, and its ability to support
feature importance evaluation [8]. These advantages make
XGBoost a popular algorithm for disaster classification based
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on environmental data [14], [18]. The optimization process in
XGBoost mathematically utilizes the following objective
function:

0bj(6) = D" L (1,90 +0(6) 0
i=1

Description:

obj(6)

The overall objective function to
be minimized.

The sum of the loss function L,
which measures the difference be
tween the predicted value ¥; and t
he actual value y,

The regularization function that c
ontrols model complexity to prev
ent overfitting.

2isi L 0, 90)

Q(e)

D. PSO (Particle Swarm Optimization)

Particle Swarm Optimization (PSO) is an optimization
algorithm inspired by the collective behavior of birds and fish,
which is used to find the optimal values for the
hyperparameters of XGBoost [9], [10]. It has been proven to
be stable in handling climate and environmental data and is
also applicable under imbalanced data conditions [19], [20].
In PSO, each particle has a position and velocity that are
updated in every iteration using the following formula:

v ()= v, -1+ .1y + .75 (Gpest — x:(t — 1))

2)
Description:
vi (t) = Velocity of particle i at iteration ¢
Xi = Position of particle i at iteration i
Pbest = Best position of particle i so far
Grest = Global best position among all particles
c1.C2 = Acceleration constants
1.2 =  Random numbers between 0 and 1

In this study, PSO was implemented to optimize key
XGBoost hyperparameters such as the number of estimators,
maximum depth, and learning rate. The swarm consisted of
10 particles and was iterated for a maximum of 5 generations.
The objective of PSO was to minimize the classification error,
where the fitness function was defined as the model’s
validation loss. Through this iterative process, PSO guided
the search toward the global optimum combination of
parameters that yielded the best prediction accuracy.

E. Evaluation

In this stage, the performance of the applied algorithm is
evaluated. The evaluation utilizes the Confusion Matrix,
followed by the calculation of accuracy, recall, F1-score, and
precision based on the applied algorithm and its performance
measurement matrix.

The hybrid PSO-XGBoost model was trained and validated
using a 5-fold cross-validation scheme to ensure robust
generalization across different data partitions. Each fold
maintained the same class distribution to address potential
data imbalance issues.

All experiments were conducted wusing Python
programming  language on Google Colab. The
implementation utilized open-source libraries including
Scikit-learn for preprocessing and evaluation, XGBoost for
model training, and PySwarms for PSO optimization.

II1. RESULTS AND DISCUSSION

A. Preprocessing

Before training and testing the prediction model, the data
must first be prepared through several preprocessing stages.
The purpose of this step is to ensure that the data is clean,
standardized, and ready to be processed by machine learning
algorithms.

1. Data Cleaning

The dataset was examined for the presence of missing
values. The dataset used consists of 50.000 rows and 21
features. After the validation process, no missing values were
found in any of the columns.

Number of Data Before and After Cleaning

50000 +

40000 +

30000 +

20000 1

Number of Data

10000 A

Befare Cleaning

After Cleaning

Figure 2 Dataset Before and After Cleaning

Although no missing data were found, this step was still
carried out to ensure the quality of the data to be used in the
model. The presence of invalid or missing data could directly
impact the model’s predictive performance, potentially
leading to reduced accuracy or overfitting.
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2. Data Normalization

The normalization method used in this study is
StandardScaler, which transforms each feature value based on
the z-score method. Since this approach calculates the
difference from the mean, the resulting transformed values
may be negative, especially when the original values are
below the mean. This behavior is normal and inherent in the
standardization process.

TABLE 3
DATA BEFORE NORMALIZATION

Monsoo  Topograph Flood
n y Drainage  Urbanizatio Probabilit
No . .
Intensit n y
y
1 3 8 4 0.65
2 8 4 3 0.45
3 3 10 2 0.62
49899 4 5 6 0.48
49999 7 4 3 0.66
5000 3 8 5 0.54
0
TABLE 4
DATA AFTER NORMALIZATION
Monsoo  Topograph Flood
n y Drainage  Urbanizatio Probabilit
No . ..
Intensit n y
y
1 -0.41 1.05 0.03 0.91
2 1.89 -0.70 -0.25 -0.41
3 -0.41 2.00 -0.78 0.74
49899 0.24 -0.02 0.44 -0.31
49999 137 -0.70 025 0.95
5%00 0.41 1.05 021 0.01

Based on the table, the scale of values across features has
been standardized. This normalization process was conducted
using the StandardScaler method, which converts each feature
value into a z-score. This transformation is performed using
the following formula:

X — U
z= 3
o
z = Normalized value (z-score result)
x = Original feature value
1 = Mean of all values in the feature
o = Standard deviation of the values in the

feature

3. Flood Risk Label Categorization

The flood risk labels in the initial dataset were in the form
of continuous values (probabilities), ranging from 0.28 to
0.73. To simplify the classification process, a binning method
was applied to categorize the data into three classes:

e Low Risk (0): 0.28 —0.40

e  Moderate Risk (1): 0.41 — 0.55

e High Risk (2): 0.56 - 0.73

Distribution of Flood Risk Categories

Low Risk (0)

High Risk (2)

Moderate Risk (1)

Figure 3 Distribution of Flood Risk Categories

The majority of the data falls into the Moderate Risk
category (83.3%), followed by High Risk (14.4%), and Low
Risk (2.3%). This imbalanced distribution may affect the
model’s performance, particularly in recognizing the minority
classes. Therefore, the model evaluation in this study will
place greater emphasis on metrics such as recall and F1-score.

4. Splitting Data

The dataset was divided into two parts: training data and
testing data. The proportion used was 80% for training and
20% for testing. From a total of 50,000 data rows available,
this division resulted in 40,000 training data and 10,000
testing data, as shown in Table 2 below:

TABLE 5
DISTRIBUTION OF TRAINING AND TESTING DATA

Data Type Number of Data
Training 10000
Testing 40000

B. Model Performance Evaluation of XGBoost Before and
After PSO

To measure the effectiveness of parameter optimization on
the XGBoost model, evaluations were conducted using the
metrics of accuracy, precision, recall, and F1-score. These
evaluations were carried out both before and after the

JAIC Vol. 9, No. 6, December 2025: 3681 — 3688



JAIC e-ISSN: 2548-6861

3685

application of the Particle Swarm Optimization (PSO)
algorithm.

TABLE 6
EVALUATION OF XGBOOST MODEL PERFORMANCE BEFORE AND AFTER
PSO

Metric Before PSO After PSO
Accuracy 93% 97%
Precission 89% 95%
Recall 63% 81%
F1 Score 70% 87%

After being optimized with PSO, there was a significant
improvement across all evaluation metrics. The 4% increase
in accuracy indicates that the model became more precise in
mapping flood risks. Furthermore, the improvement in recall
demonstrates that the model became more sensitive in
identifying flood risk cases, especially within minority classes
that were previously often overlooked.

The overall metric improvement demonstrates that PSO
effectively discovered a more optimal set of hyperparameters
for the XGBoost model. By minimizing classification errors
through iterative parameter updates, PSO improved the
model’s ability to generalize across different flood risk levels.
The increase in recall, particularly for the minority class,
reflects higher model sensitivity in recognizing less frequent
flood events that were previously misclassified.

C. Feature Importance

After the XGBoost model was optimized using PSO, an
analysis was conducted to evaluate the contribution weight of
each feature using the feature importance method. This
process aimed to identify which features had the most
significant impact on flood risk prediction.

Top 5 Feature Importance (XGBoost)

Dams Quality

Urbanization

Monsoon Intensity

Feature

Inadequate Planning

Deforestation

T
0.03
Importance

Figure 4 Top 5 Feature Importance

The graph illustrates that Rainfall is the dominant factor in
the prediction, followed by the level of Urbanization and the
quality of Drainage. This finding is logical, as areas with high
rainfall and dense development tend to be more vulnerable to

flooding. Meanwhile, features such as River Management and
Soil Moisture also play an important role, as they influence
the environment’s natural ability to absorb water.

Although the PSO-XGBoost model achieved stable
results, several classification errors were still observed. Most
misclassifications occurred in areas with high rainfall but no
actual flooding. This condition is likely due to elevated terrain
or efficient drainage systems, which prevent inundation even
under heavy precipitation. These findings indicate that
additional topographical and hydrological parameters could
further enhance prediction accuracy.

D. The Effect of Performance from PSO Result

To examine the model's sensitivity to the number of
decision trees, an experiment was conducted by increasing the
n_estimators parameter value from 300 to 550. The other
parameters (max_depth and learning rate) were kept
constant, as they showed no significant effect on accuracy
during testing.

Graph of the Effect of n_estimators Value on Accuracy

0.970 4

0.968

0.966

Accuracy

0.964 4

0.962 4

T T T T
400 450 500 550

n_estimators Value (upper bound)

T T
300 350

Figure 5 Graph of the Effect of n_estimators Value on Accuracy

The graph shows that increasing the n_estimators value
directly impacts the improvement of the model’s accuracy.
This can be technically explained by the fact that the more
trees (estimators) are used, the greater the model’s
opportunity to capture complex patterns within the data.
However, after reaching around 500 estimators, the accuracy
improvement began to slow down and tended to stagnate at
97.01% when the value reached 550. This indicates that the
model has reached an optimal point, where adding more trees
only increases computation time without providing
significant accuracy gains.

E. Extebded Model Evaluation Using AP. Map AND FPR

1. Macro Precision-Recal Curve Graph

To complement the precision—recall evaluation, the
Receiver Operating Characteristic (ROC) curve was also
analyzed to examine the balance between true positive and
false positive rates. The PSO-XGBoost model achieved an
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average Area Under the Curve (AUC) score above 0.95 across
all classes, indicating excellent discriminative performance in
differentiating flood risk categories.

Macro Precision-Recall Curve
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0.0 0.2 0.4 0.6 0.8 1.0
Recall

Figure 6 Macro Precision—Recall and ROC Curve for Flood Risk
Classification

The Macro Precision-Recall (PR) Curve illustrates the
relationship between precision and recall for each class.
Classes 1 and 2 produce stable curves that approach the top-
right corner, indicating excellent performance. Class 0 shows
a slight decline in the middle section, suggesting that the
model is slightly less precise in distinguishing the low-risk
class. However, overall, the model successfully maintains a
good balance between precision and recall.

2. Evaluation of Average Precision (AP) and Mean
Average Precission (mAP)

Average Precision (AP) per Class and mAP

=== mMAP =0.96

1.0 A

0.8

AP Value
=4
o
|
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0.2 1

0.0 -

Class 0 Class 1 Class 2

Figure 7 Average Precision (AP) per Class and Map

TABLE 7
AVERAGE PRECISION (AP) PER CLASS AND MEAN AVERAGE PRECISION
(mAP)
Nilai AP
85.09
99.80
97.78

Kelas
Kelas 0
Kelas 1
Kelas 2

Additional evaluation was conducted using the Average
Precision (AP) metric for each class, along with the mean
Average Precision (mAP) as the overall average score. Based
on the testing results, the AP scores for classes 0, 1, and 2
were 85.09%, 99.80%, and 97.78%, respectively. The mean
mAP reached 94.22%, indicating that the model does not only
perform well for a single class but also demonstrates stability
across all flood risk categories. The bar chart visualization
shows that the AP score for class 1 is nearly perfect, while
class 0 remains challenging due to its underrepresented data.
The mAP line on the graph serves as a general reference for
overall model performance. These results further reinforce the
conclusion that the XGBoost model optimized with PSO is
capable of delivering consistent and balanced multi-class
classification performance.

3. False Positive Rate (FPR)
False Positive Rate (FPR) per Class

254

21.52%

20

=
v
L

FPR Value

=
o
L

0.06% 0.49%

T y
Class 0 Class 1 Class 2

Figure 8 False Positive Rate (FPR) per Class

The False Positive Rate (FPR) is calculated from the
confusion matrix to determine how often the model
incorrectly classifies a negative class as positive. The
evaluation results show that the FPR for Class 1 is higher
compared to Classes 0 and 2. This indicates that the model
tends to misclassify instances of Class 1 slightly more often
than the others. However, in general, the FPR values remain
within acceptable limits and do not significantly impact the
overall performance of the model.

4. Combined Evaluation

The model’s performance was evaluated using two
complementary approaches to obtain a comprehensive
understanding. First, a classical evaluation was performed
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using metrics such as precision, recall, and F1-score, which TABLE 9
are calculated based on the final predicted class against the PERFORMANCE COMPARISON OF EVALUATION METRICS BETWEEN
. . . . . ALGORITHMS
actual labels using a confusion matrix. This method provides Recall  FL-
assessment based on a single classification decision threshold. Model Accuracy  Precision Score
. XGBoost 93% 89% 63% 70%
Comparison of Madel Evaluation per Class XGBOOSt + PSO 97% 95% 8 1 % 87%
SVM 98% 94% 88% 91%
Random Forest 83% 82% 55% 61%

Percentage (%)

Class 0

Class 1 Class 2
dass

Figure 9 Comparison of Model Evaluation per Class

TABLE 8
COMPREHENSIVE MODEL EVALUATION PER CLASS
Kelas Precission  Recall Fl- FPR AP
Score
Kelas 0 94.55 44.64  60.64 0.06% 85.09
Kelas 1 95.75 9942 9755 21.52%  99.80
Kelas 2 96.70 83.86 89.82 0.49% 97.78

Second, a curve-based evaluation was conducted by
calculating the Average Precision (AP) for each class and the
overall Mean Average Precision (mAP). AP takes into
account the area under the precision—-recall curve, thereby
reflecting the model’s performance across various prediction
thresholds.

The differences in scores resulting from the two
approaches are expected due to the differing evaluation
principles. Nonetheless, both methods consistently indicate
that the model performance has improved and stabilized after
the application of PSO-based optimization.

Overall, the integration of traditional metrics such as
accuracy, precision, recall, and Fl-score with curve-based
evaluations like AUC-ROC and mAP provides a broader
view of model performance. The high and consistent values
across all metrics confirm that the PSO-XGBoost approach
not only improves accuracy but also ensures stability and
robustness in multi-class flood risk prediction.

5. Comparison with Other Algoriyhms

The experiments were conducted on four classification
models, namely XGBoost, XGBoost with PSO, SVM, and
Random Forest. The evaluation results are presented using
accuracy, precision, recall, and F1-score metrics, as shown
table 9.

Although SVM achieved the highest accuracy and F1-
score, this model presents a drawback in terms of
computational efficiency. The feature importance evaluation
process using SVM can take more than 30 minutes, making it
less ideal for real-time systems. In contrast, XGBoost
optimized with PSO provides nearly comparable accuracy
while offering superior time efficiency. With 97% accuracy,
a high Fl-score, and significantly faster execution time, this
model is considered more stable and balanced.

TABLE 10
EXECUTION TIME COMPARISON BETWEEN MODELS

Model Execution Time
XGBoost 2 Seconds
XGBoost + PSO 5 Minutes 30 Seconds
SVM 2 Minutes 40 Seconds

Random Forest 5 Seconds

While SVM excels in terms of accuracy, the high
computational cost becomes a significant concern. On the
other hand, XGBoost + PSO offers a balance between high
accuracy and shorter processing time compared to SVM, as
well as more consistent results compared to Random Forest.
This makes XGBoost + PSO the most practical model to be
implemented in predictive systems that require both speed
and accuracy simultaneously.

IV. CONCLUSION

This study successfully developed a flood risk prediction
model using the XGBoost algorithm optimized through the
Particle Swarm Optimization (PSO) method by searching for
optimal values of the n_estimators, max_depth, and
learning_rate hyperparameters, resulting in an accuracy
improvement of up to 97.01%. In addition to accuracy, the
model's performance enhancement is also reflected in the
increase of the minority class recall from 21% to 57%, as well
as the Fl-score from 41% to 70%. Further evaluation shows
the Average Precision (AP) scores per class reached 85.09%,
99.80%, and 97.78%, with a mean Average Precision (mAP)
of 94.22%. Moreover, the False Positive Rate (FPR) values
were very low for Classes 0 and 2. The Macro Precision—
Recall Curve visualization further confirms the model’s stable
performance in multi-class classification. When compared to
other algorithms such as SVM and Random Forest, the
XGBoost + PSO model offers a balanced performance
between classification accuracy and computational
efficiency, making it highly potential for implementation in
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real-time flood detection systems. For future research, this
model can be further explored using other optimization
methods, tested on real-time datasets, and applied to early

warning

systems that adapt to climate change and

environmental conditions.
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