Journal of Applied Informatics and Computing (JAIC)
Vol.9, No.6, December 2025, pp. 2950~2956
e-ISSN: 2548-6861

2950

Abstract Syntax Tree Model for Minimizing False Negative in Semantic
Evaluation of Python Fill-in-the-Blank

Usman Nurhasan'*, Didik Dwi Prasetya?, Syaad Patmanthara’,
* Departemen Teknik Elektro dan Informatika, Universitas Negeri Malang, Indonesia
usman.nurhasan.2505349@students.um.ac.id', didikdwi@um.ac.id?, syaad.ft@um.ac.id?

Article Info

ABSTRACT

Article history:
Received 2025-09-08
Revised 2025-11-04
Accepted 2025-11-08

Keyword:
Abstract Syntax Tree,

Epistemology of Evaluation,

Fill-in-the-Blank,
Pedagogical Effectiveness,
Semantic Evaluation,

This study develops and evaluates an automated assessment model using Abstract
Syntax Trees (AST) with a view to overcoming the limitations of string-matching
techniques in the assessment of Fill-in-the-Blank (FIB) programming answers.
Traditional string-matching techniques have a relatively high False Negative Rate
(FNR) of 21.5% within the context of detecting semantic equivalence. The current
model uses semantic structural triangulation to ascertain the semantic similarity of
student answers. Technical assessment shows that the AST approach markedly
reduces the FNR to 4.5%. The model demonstrates high reliability (x = 0.83) with
high classification accuracy (F1 Score = 0.966) which attests to its inferential
validity. From a pedagogical perspective, system implementation leads to substantial
learning gains, evidenced by a large effect size (Cohen’s d = 1.82) and a high
normalized gain (Normalized Gain = 0.90). Multiple regression analysis confirms
that semantic accuracy is the primary causal factor driving improved student
comprehension. Ontologically, while AST is valid as a partial representation, its
limitations—particularly tree isomorphism in recursive structures—highlight the
need for further exploration of graph isomorphism approaches. Control Flow Graphs
(CFG) and Data Flow Graphs (DFG) offer more expressive relational models for
capturing control and data dependencies. The model demonstrates functional
feasibility with a System Usability Scale (SUS) score of 76.47. Overall, the AST
Triangulation Model is validated as pedagogically effective, inferentially robust, and
supportive of evaluative transparency. Future research recommends validating the
model on more complex tasks and releasing it as open-source to support
reproducibility.

This is an open access article under the CC—BY-SA license.

I. INTRODUCTION

Studies have shown that Python is primarily used across
the world in CS1 and CS2 curricula where the teaching of
foundational computational thinking is also integrated. The
first two levels of the curriculum, for example, CSI1, are
essential for the use of automated assessment systems. CS1
tends to create the most false negative issues, specifically in
the Fill-in-the-Blank (FIB) programming assignments. The
students’ responses are usually semantically equivalent but
are presented in radically different syntactic forms that the
string-matching systems fail to identify as correct.

In the CS2 curriculum, more complex topics are
introduced, such as data structures and algorithms, which
challenge the representational limits of pure Abstract Syntax

Tree (AST) models. The recursive logic and complex data
flows are significant problems that the AST-based systems
have. It becomes necessary to shift to graph isomorphism,
especially Control Flow Graphs (CFG) and Data Flow Graphs
(DFG) to accurately capture control flows and semantic
equivalence in the students' algorithms at CS2.

Agarwal showed that Python is the main language used for
introductory programming courses for over 70% of the
world’s top universities [1]. This extensive use has Python
being incorporated into automated assessment tools and other
digital learning tools. Nevertheless, most of these tools that
automate assessment focus on string matching techniques that
do literal, line-by-line comparisons of code, ignoring the
meaning and the logic of execution[2], [3]. Cheang has shown

http://jurnal.polibatam.ac.id/index.php/JAIC

mailto:didikdwi@um.ac.id
mailto:syaad.ft@um.ac.id
https://creativecommons.org/licenses/by-sa/4.0/

JAIC e-ISSN: 2548-6861

2951

that for elementary programming tasks, including FIB-type
questions, asymmetry in the code can lead to a 28% false
negative rate [4]. This means that the system will mark a
logically true answer incorrect because the system will focus
on syntactic differences.

In Indonesia, the national digital training programme as
well as information technology programmes in Python have
digital training programmes incorporated[5]. Prasetyo et al.
states that above 60% of tertiary educational institutions in
Indonesia integrated Python into LMS assessments [6].
However, these systems lack in being only text matching
systems. This leads to frustration and a sense of inequity in
assessment because of unconsidered semantic differences in
student answers.

FIB activities are used to evaluate students’ grasp of syntax
and fundamental logic. However, some poorly designed
automatic scoring systems misclassify answers that are
functionally equivalent. Consider two function definitions
that count the even numbers in a list — they may be different
in syntax but compute the same result.

Answer 1 # Answer 2
def count_even(nums): def count_even(nums):
return len([x for x in nums count = ()
ifx %2 ==0]) Jor n in nums:
ifn%2==0:
count +=1

return count

Even though the systems that use string matching fail to see
the equivalence, both definitions produce the same output for
all valid inputs. This leads to unfair scoring. In contrast, an
Abstract Syntax Tree (AST) approach would permit detection
of the equivalent definitions and thus achieve a definition of
fair scoring [7]. Despite AST’s considerable use in areas such
as plagiarism detection and evaluation of semantic similarity,
direct use of this technique to automate assessment of FIB
programming tasks remains unexplored [8].

Notwithstanding its structural benefits, there remain
studies without a semantic assessment framework using AST,
particularly geared towards scenarios involving FIB. No other
work leverages AST as a lightweight, efficient structural filter
in automated assessment systems. Moreover, there is still no
fully developed approach that pairs AST with execution
results and expert critiques alongside one another, in a
coherent fashion, to demonstrate semantic equivalence across
student work [9].

This paper outlines a Lightweight and Valid Semantic
Triangulation Model, which is directed towards automating
FIB assessments within the field of Python training. The
model in this instance looks to AST as a primary structural
filter with execution results and expert annotations still
retained as a filter. Validation is conducted through means of
three methods: equivalent output comparison, inter-rater
agreement (Cohen’s Kappa > 0.8), and AST structural
likeness evaluated by means of tree isomorphism. The
intention is to curb false negatives, enhance precision in

scoring, and uphold the perceived fairness of automated
systems from the students' perspective [10].

Ontologically, the research argues that each programme
has an abstract syntactic structure that captures its logic. The
AST is treated as a partial semantic representation that
captures some logical relations underlying the surface syntax,
yet it falls short concerning some aspects of dynamism, such
as the consequences of execution, runtime interaction, and
execution behaviours[11]. Therefore, the AST serves as an
approximation model, the validity of which is demonstrated
through execution traces and expert evaluations.

The study is anchored epistemologically in evaluative-
experimental design and post-positivism. Scientific truth is
not an absolute construct but a product of triangulating
empirical data from several sources. The integration of
programme execution results, expert annotations, and AST
analysis, in which semantic equivalence is sustained, enables
validation. The three, in unison, constitute an epistemic
triangulation approach that isolates the model's internal
validity and provides an empirical comparison of its efficacy
against traditional string matching methods.

II. METHOD

This study aims to assess the technical validity and the
pedagogical value of a semantic assessment system based on
Abstract Syntax Tree (AST) for Fill-in-the-Blank (FIB)
Python programming activities. The methodology involves
two main tracks. The first is the development and validation
of the FIB assessment system based on a Research and
Development (R&D) model. The second is the assessment of
the FIB learning outcomes using a quasi-experimental design
between groups.

A. Philosophical Foundations of FIB Activities

Fill-in-the-Blank (FIB) activities require students to
complete programming tasks by filling in the gaps with code
that shows an understanding of the logic of the programme.
From an ontological approach, FIB responses are treated as
abstract semantic entities with an Abstract Syntax Tree (AST)
representation. The AST is a partial representation of the
programme logic that can be assessed for empirical validity
through structural equivalence and execution assessment [12].
With the adoption of structural realism, the system is assumed
to capture the programme logic in an objective manner as long
as the semantic interplay between the system components is
preserved, even when their stylistic representations vary.

In identifying the epistemological stance, the method is
defined as hybrid. The system’s inferences on FIB responses
are examined alongside quantitative measures encompassing
accuracy, precision, and F1-score, which are also validated by
experts with significant inter-rater reliability. Data
triangulation is employed to guard the inferential validity and
to build social trust in the automated evaluation system [13].

Abstract Syntax Tree Model for Minimizing False Negative in Semantic Evaluation of Python Fill-in-the-Blank

(Usman Nurhasan, Didik Dwi Prasetya, Syaad Patmanthara)

2952

e-ISSN: 2548-6861

B. Research Design for FIB Evaluation

This study employs an R&D framework with iterative
prototyping and integrates a quasi-experimental design to
evaluate instruction on the constructed Fill-in-the-Blank
(FIB) assessment system. These two methodologies are
designed to run together and improve each other. The
technical validation’s purpose is to measure the performance
of the AST Evaluator as a semantic classifier for FIB
responses, which will utilise three different evaluation
techniques. The first technique is accuracy analysis, where the
performance of the system is evaluated against a truth
benchmark defined by experts using precision, recall, F1-
score, and the false negative rate to define ground truth [14].
The second technique is reliability validation, where expert
annotations are evaluated using Cohen’s Kappa alongside the
system-generated scores and the scores of the experts. Third,
qualitative error analysis informs iterative design, especially
in the recursive and complex lambda functions [15].

The purpose of the pedagogical evaluation is to identify
how the FIB-AST system functions in enhancing the learning
outcomes and retention rates of students. The experimental
design consists of one experimental group (n=26) which uses
the FIB-AST system which generates automated semantic
feedback, and one control group (n=25) which uses
conventional teaching strategies. The same instructional
materials and FIB tasks were given to both groups.

The assessments are given in three phases: Pre-Test, Post-
Test, and Delay-Test. The Delay-Test is intended to measure
transfer learning. Here, students determine semantic
equivalence within new FIB tasks and previously learned
knowledge. The Delay-Test items are structurally new and do
not repeat previous questions. They present new situations
that are logically the same, although differing in wording [16].
The validity of the test instruments was ensured by subject-
matter experts while reliability was evaluated using
Cronbach’s alpha.

The analysis of data typically involves various quantitative
methods. An Independent Sample T-Test is conducted to
assess group differences in performance, and a Paired Sample
T-Test is used to analyse score differences in the experimental
group. To determine intervention effects, Cohen's d is used in
conjunction with Normalised Gain, which assesses
improvement relative to baseline scores. Furthermore, the
conceptual variability is examined through the analysis of
standard deviation’s reduction.

C. Development of Components and System Descriptions
The system development phases for automated semantic-
based evaluation are detailed in Table I. Each phase describes
the student response trajectory, encompassing code
submission, Abstract Syntax Tree (AST) formation,
canonicalization, structural comparison, execution-
integration validation, score construction, and expert
agreement evaluation. Table I summarizes each development
phase, its corresponding main component, and its description

TABELI
SYSTEM DEVELOPMENT STAGES
Phase Component Description
1 FIB Input Students fill in missing code
segments using Python strings.
2 AST Builder Student responses are parsed into
ASTs using Python’s ast module.
3 AST Semantic transformation is
Canonicalisati | applied to eliminate syntactic
on noise and extract logical patterns.
4 AST Student ASTs are compared to
Comparison reference keys using tree
isomorphism and subtree
matching.
5 Output Code is executed in a sandbox
Execution environment; outputs are
compared using hash functions.
6 Scoring Final scores are computed: 70%
from AST similarity, 30% from
output equivalence.
7 Expert System scores are compared with
Validation manual expert annotations using
Cohen’s Kappa.
8 Accuracy Precision, recall, F1-score, and
Evaluation false negative rate are calculated
against expert ground truth

To fulfil the educational goals of Fill-in-the-Blank (FIB)
activities, a 70:30 ratio distribution between the Abstract
Syntax Tree (AST) structure and the execution output score
has been implemented. This approach emphasises the logical
structure of students' code rather than concentrating
exclusively on the output. The AST section determines
whether students produce a semantically equivalent logic, and
the execution output serves as a layer for functional
verification. This scoring ratio may be modified in the case of
open-ended projects to best appreciate functional realism
[17].

The process of canonicalisation includes the removal of
syntactic metadata (linenos, col offsets, and ctx),
normalisation of local variable names, lexicographic ordering
of unordered code blocks, and the syntactic restructuring of
control flows, such as the transformation of for loops to while
loops, when their logical meanings are semantically
equivalent. Consider the following example:

Original
for i in range(n):
total +=1

After transformation
i=0
while i <n:

total +=1

i+=1

This transformation reduces syntactic noise and extracts
stable logical patterns which allow the AST to be compared
man_

JAIC Vol. 9, No. 6, December 2025: 2950 — 2956

JAIC e-ISSN: 2548-6861

2953

D. Validation and Analysis of FIB Responses

As part of the validation of the system, the analyses of 200
FIB responses were conducted where 2 experts performed
independent analysis of the responses. These responses were
classified into four types: Fully correct (about 35%), Syntactic
(about 15%), Minor Semantic (about 25%), and Logical or
Output (about 25%). Inter-rater reliability for 50 responses
was calculated and yielded a value of Cohen’s Kappa 0.88.
Data analysis occurred on three levels. First, dimensions of
reliability and accuracy were assessed using Cohen's Kappa
with the other measures of precision, recall, F1-score, and the
False Negative rate. Second, the alignment of the system-
generated scores and the expert-assigned scores were
evaluated using Pearson correlation. Third, qualitative error
analysis was conducted focusing on the false negatives and
false positives to expose weaknesses in the canonicalisation
and subtree matching algorithms. These analyses provided the
basis for system refinements.

E. Ethics and Reproducibility

This study was ethically approved by the programming
faculty within the Department of Information Technology at
the State Polytechnic of Malang. To protect confidentiality,
all participant data were anonymised. The open-access
GitHub repository contains the source code for the AST
Evaluator, the anonymised dataset, and the scripts for the
statistical analyses conducted. This is to facilitate independent
verification and to provide transparency around the methods
employed, in the spirit of open science [19], [20].

III. RESULT AND DISCUSSION
This part explains the outcomes derived from the three
phases of the study: (1) technical validation along with system
acceptance, (2) analysis of the pedagogical effectiveness, and
(3) epistemological evaluation of the evaluator based on AST.

A. Technical Validation and System Acceptance

Students, instructors, and administrators engaged in a
black-box testing procedure which ascertained that all
features of the system function as expected. The system met
the operational feasibility minimum requirements. Table II
provides the results of black-box testing.

number of respondents, and the respective scores. In assessing
subjective usability and system acceptance, the SUS
questionnaire was distributed. Table III summarizes the
distribution of 35 respondent scores, resulting in an average
score of 76.47, which strongly indicates the functional
feasibility of the system.

TABEL III
DISTRIBUTION OF SUS SCORES

SUS Number of Individual Scores

Score Respondents

Range

4049 1 45

50-59 6 50, 52.5, 55,55, 57.5,57.5

60-69 3 65, 65, 67.5

70-79 7 70,70, 72.5,75,75,77.5,71.5

80-89 10 80, 80, 82.5, 82.5, 82.5, 85, 85,
85,87.5,87.5

90-100 8 90, 90, 90, 92.5,92.5, 95, 95,
100, 100, 100

In order to illustrate the system's effectiveness in resolving
the false negative issues discussed in the introduction, a
comparison was made with a string matching—based system
that used the same dataset.

Previous analyses suggest substantial difficulty with the
identification of semantic equivalence with string matching
methods, leading to false negative rates of over 20% during
static evaluations[23]. In contrast, the current system
noticeably improved the false negative reduction and
alignment with expert annotations, achieving substantial
agreement as measured by Cohen’s Kappa [24].

FIB and AST evaluator achieved a Cohen’s Kappa of 0.83
compared to a value of 0.61 with string matching, with false
negative rates of 21.5 and 4.5% respectively as shown in
Table IV. The results suggest the integrated AST technology
identifies semantic equivalence which string based
evaluations fail to achieve, leading to greater accuracy and
consistency in evaluations.

B. Pedagogical Effectiveness Analysis
B.1. Between-Group Comparison

An Independent Sample T-Test framework was employed
for evaluations over the three measurement periods of Pre-

TABEL II Test, Post-Test, and Delay-Test. These results are
BLACK-BOX TESTING RESULTS Summarised in Table 1V.
User Group Features Tested Result TABLE IV
Students Course, Module, FIB, Test, Valid SUMMARY OF STATISTICAL ANALYSIS WITH SIGNIFICANCE INDICATORS
Results Group Test Phase Mean t-value | p-
Instructors Content Management & Valid Score value
Automated FIB Items Experimental Pre-Test 2745 —0.046 | 0.963
Administrators Data Management & Valid Control Pre-Test 27.99
Reporting Experimental Post-Test 92.92 4.488 0.000
Control Post-Test 49.68
The System Usability Scale (SUS) evaluates user Experimental | Delay-Test | 81.84 3.387 0.001
satisfaction with the developed system [21], [22]. Table III Control Delay-Test | 49.52

presents the distribution of SUS scores including the range,

Abstract Syntax Tree Model for Minimizing False Negative in Semantic Evaluation of Python Fill-in-the-Blank

(Usman Nurhasan, Didik Dwi Prasetya, Syaad Patmanthara)

e-ISSN: 2548-6861

2954
Experimental Pre — Post 27.45 7.342 0.000
—
92.92
Experimental Post — 92.92 1.780 0.087
Delay —
81.84
Control Pre — Post | 27.99 2.019 0.055
—
49.68
Control Post — 49.68 0.014 0.989
Delay —
49.52

The Independent Sample T-Test demonstrated statistically
significant improvement for the experimental group (0.000)
and significant retention within the Delay-Test phase (0.001).
The intervention effect size was very large (Cohen’s d =1.82),
classified as “very large effect” according to Kraft’s criteria.
A Normalized Gain of 0.90 indicates a substantial increase in
conceptual understanding [25]. There was a reduction in the
standard deviation from 39.48 (Pre-Test) to 13.20 (Post-Test)
suggesting increased homogenisation of student
comprehension within the experimental group.

B.2. Multiple Regression and Gain Contextualisation

The multiple regression analysis targeted the predictive
impact of each variable on the Post-Test score improvement.
Among the AST structural score components, the strongest
contribution was noted in the structural scoring AST
component compared to execution output (B = 0.28) and
response time (B = 0.12) with (B = 0.61, p <0.01). Results of
this analysis substantiate the importance of semantic fairness
most prominently AST scoring in understanding student
improvement.

The large gain (g = 0.90) is to be interpreted with caution
as this reflects two conditions. One includes the control
group’s Post-Test lower baseline performance (49.68)
suggesting issues with assessing initial performance. The
second is that the FIB+AST system functioned as a highly
accurate remedial feedback tool and effectively removed
semantic penalties of false negatives. Literature describes
such sizable gains as typical in intensive remedial
programmes [26].

C. AST Evaluator Validation
C.1. Scoring Weight Trade-Off

For a scoring scheme of 70:30 (AST:Output) and two
alternatives the analysis focused on the trade-off between
false negatives (FNR) and false positives (FP). The 70:30
scheme yielded the lowest FNR, despite a slightly higher FP
rate. A 70:30 ratio was adopted based on axiological
principles of assessment: unfair penalties (false negatives) are
more psychologically and pedagogically damaging than
minor recognition errors (false positives) [27].

C.2. Limitations of Canonicalization and Tree Isomorphism
The AST Evaluator had an F1-Score of 0.966 and thus,
high classification accuracy. Yet, the presence of false
negatives revealed the system’s ontological limitations:
recursive structures, nested lambda functions, and nested
ternary operators were not aligned with canonical structures.
Such limitations stem from the rigidity of tree isomorphism,
which strictly analyzes the framework of interdependencies,
while Abstract Syntax Trees (ASTs) are primarily Directed
Acyclic Graphs (DAGs) [28]. Consequently, tree
isomorphism does not capture the abstract semantic
relationships anchored on control and data flow. According to
Dikici et al. [29], semantic code recognition based on AST
edit distance is ineffective due to structurally different code.

D. Ontological and Epistemological Analysis
DI. Ontological Foundation: Moving from Syntax to
Relational Representation

This study adopts the perspective of Ontic Structural
Realism (OSR) with the understanding that program logic
constitutes a key structural reality. At first the Abstract Syntax
Tree (AST) was treated as an ontological set as a
representation of the syntactic structure. However, in the
evaluation, the reliance on the AST as an adequate
representation was shown to be an overestimation. The
canonicalization failures associated with recursive constructs
indicate that the tree isomorphism thesis fails to adequately
capture the essential structural reality of program logic.

To address these issues, this study proposes an ontological
shift towards graph-based models, particularly Control Flow
Graphs (CFG) and Data Flow Graphs (DFG). This shift
recognises that relational ontologies consisting of control
flow and data dependencies are a more accurate reflection of
program logic than surface syntax. The CFGs and DFGs not
only embody vital semantic relations but also aid in
pinpointing semantic equivalence despite varied coding
approaches. The structural integrity that graph models
provide also enhances the objectivity of system assessments,
offering a potential for valid classification that bypasses
syntactic alterations.

D.2. Epistemology: Post-Positivism and Uncertainty
The evaluation system is grounded in a post-positivist
epistemology, one that treats inference to the truth as non-
absolute and probabilistic. The existencesss of a false positive
(FP) finding in automated semantic validation demonstrates
the intrinsic limitations of observation. Multiple outputs that
are similar may not logically mean the same thing. This
speaks to the uncertainty inherent in automated semantic
validation. The empirical data was validated systemically
through cross-triangulation :
a. Inferential Validity: Evaluated through internal
consistency measures (F1-Score, Recall) of the AST and
the system's accuracy in replicating correct structural

decisions.

JAIC Vol. 9, No. 6, December 2025: 2950 — 2956

JAIC e-ISSN: 2548-6861

2955

b. Pedagogical Validity: Evaluated through external
reliability (expert annotations, «), practical impact
(Normalised Gain, g), and the return on investment

measures (ROI).

TABLE V
VALIDATION OF PEDAGOGICAL FEASIBILITY
Analytical Key Quantitative | Philosophical
Aspect Findings Validation Validation
Technical FIB+AST SUS =76.47;, | AST serves as
Validity & system is FNR =4.5% a partial
Usability functional structural
and representation
exhibits prior to
high expansion.
usability.
Pedagogical Significant | Cohen’s d = Semantic
Effectiveness | learning 1.82; accuracy
gains g=10.90; ensures
supported B_AST=0.61 | evaluative
by fairness fairness;
validation. promotes
transfer
learning.
AST High F1-Score = Inference is
Evaluator inferential 0.966; probabilistic;
Performance accuracy k=10.83 demands
and strong epistemic
expert transparency
reliability. via confidence
score.

A Confidence Score, which is based on Tree Edit Distance,
is produced and used to calibrate inferences. This score
increases transparency and aids decision-making, offering a
form of control to the user in cases of extreme uncertainty and
manual validation. Thus, the system is a calibrated, inferential
instrument of revision and not an absolute one.

The following Table V captures key findings, based on the
post-positivist epistemological paradigm, which
demonstrates the technical feasibility and pedagogical impact
of the AST-Graph based evaluation system while outlining its
pedagogical impact within the probabilistic framework of the
system.

IV. CONCLUSION

A. Summary

This study provides two main contributions. First,
technically, the AST-based model significantly lowers the
false negative rate from 21.5% (observed in string matching)
to 4.5%. This indicates that AST can be considered an
effective semantic filter for the detection of logical
equivalence in student answers. Second, pedagogically,
semantic accuracy stands out as the foremost factor in driving
improvements in significant learning. The size of the impact
(Cohen’s d = 1.82) and the multiple regression analysis
determine that pure AST scores most strongly predict
increased comprehension.

The AST-based semantic evaluation model demonstrates
high construct validity and construct reliability. It surpasses
the traditional syntactic methods with its validated results and
excellent classification results (F1 = 0.966; « = 0.83). A
validated triangulation framework provides a solid epistemic
base. The inferences a system generates can be treated as
probabilistic ground truth, permitting teachers to spend less
time manual grading and more time on the analysis of
ambiguous cases.

AST is, ontologically, a valid semantic representation.
However, the limitations of tree isomorphism in recognizing
recursive structures and nested lambda functions reveal the
need to attentively improve nested tree structures for AST to
achieve its full potential as a more powerful semantic analysis
model. In its axiological dimension, the system reveals
functional feasibility and solid user acceptance, illustrated by
a System Usability Scale (SUS) score of 76.47, which refers
to extended usability. Usability and user trust are furthered by
features such as AST visualization and confidence scoring.

Moreover, the AST model has a quantifiable pedagogical
effect. A normalized gain of 0.90 with a low standard
deviation suggests some degree of conceptual
homogenization. Consistent retention outcomes suggest that
semantic fairness—not feedback speed—primarily aids in the
transfer of learning.

B. Recommendations

Future research should expand the scope of semantic
evaluation. It would be beneficial to use graph isomorphism
techniques based on Control Flow Graphs (CFG) and Data
Flow Graphs (DFG) to improve upon the limitations of tree
isomorphism. More complex problems could include
detecting semantic errors, performing dynamic code analysis,
and structural assessments across various programming
languages. Generalization of the AST would also need to be
assessed on other languages, such as Java or C++. Future
research could also explore the use of Large Language
Models (LLMs) to enable flexible and situational semantic
evaluations. Longitudinal studies are recommended to assess
long-term retention of learning outcomes. Implementing
additional Delay-Tests at intervals of one and three months
would help measure the durability of learning effects.
Additionally, it would be valuable to correlate student activity
logs with score homogenization to identify effective
interaction patterns. In line with open science principles, it is
strongly encouraged to publish anonymized datasets and the
source code for the AST Evaluator in open repositories. This
practice promotes external validation and ensures the
reproducibility of results.

REFERENCES
[1] A. Agarwal, “Python for CS1, CS2 and beyond,” J. Comput. Small
Coll., vol. 20, pp. 262-270, Jan. 2005.
2] M. Messer, N. C. C. Brown, M. Kélling, and M. Shi, “Automated

Grading and Feedback Tools for Programming Education: A
Systematic Review,” ACM Trans. Comput. Educ., vol. 24, no. 1,

Abstract Syntax Tree Model for Minimizing False Negative in Semantic Evaluation of Python Fill-in-the-Blank

(Usman Nurhasan, Didik Dwi Prasetya, Syaad Patmanthara)

2956

e-ISSN: 2548-6861

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

Feb. 2024, doi: 10.1145/3636515.

Z. Fan, S. H. Tan, and A. Roychoudhury, “Concept-Based
Automated Grading of CS-1 Programming Assignments,” ISSTA
2023 - Proc. 32nd ACM SIGSOFT Int. Symp. Softw. Test. Anal., pp.
199-210, 2023, doi: 10.1145/3597926.3598049.

B. Cheang, A. Kurnia, A. Lim, and W.-C. Oon, “On automated
grading of programming assignments in an academic institution,”
Comput. Educ., vol. 41, pp. 121-131, Sep. 2003, doi:
10.1016/S0360-1315(03)00030-7.

M. Erfan, 1. Handika, Afriyanti, W. Aziiz Hari Mukti, and T. Ratu,
“Penggunaan Bahasa Pemrograman Python dalam Analisis
Hubungan Peminat dan Daya Tampung Seluruh Prodi di Indonesia
Pada PTN Akademik, Vokasi dan PTKIN Tahun 2023,” J. Classr.
Action Res., vol. 6, no. 2, pp. 313-9, 2024, [Online]. Available:
http://jppipa.unram.ac.id/index.php/jcar/index

A. Kholik, H. Bisri, Z. K. Lathifah, B. Kartakusumah, M. Maufur,
and T. Prasetyo, “Impelementasi Kurikulum Merdeka Belajar
Kampus Merdeka (MBKM) Berdasarkan Persepsi Dosen dan
Mahasiswa,” J. Basicedu, vol. 6, no. 1, pp. 738-748, 2022, doi:
10.31004/basicedu.v6il.2045.

Z. Swilam, A. Hamdy, and A. Pester, “Improving code semantics
learning using enhanced Abstract Syntax Tree,” Int. J. Comput.
Appl., vol. 47, no. 1, pp. 57-69, Jan. 2025, doi:
10.1080/1206212X.2024.2443506.

Z. Zhu, N. Funabiki, M. Mentari, S. T. Aung, W. C. Kao, and Y. F.
Lee, “An Automatic Code Generation Tool Using Generative
Artificial Intelligence for Element Fill-in-the-Blank Problems in a
Java Programming Learning Assistant System,” Electron., vol. 14,
no. 11, pp. 1-27, 2025, doi: 10.3390/electronics14112261.

A.-T. P. Nguyen and V.-D. Hoang, “Development of Code
Evaluation System based on Abstract Syntax Tree,” J. Tech. Educ.
Sci., vol. 19, no. 1, pp. 15-24, 2024, doi: 10.54644/jte.2024.1514.

D. R. Fudholi and A. Capiluppi, “Artificial intelligence for source
code understanding tasks: A systematic mapping study,” Inf. Sofiw.
Technol., vol. 189, p- 107915, 2026, doi:
https://doi.org/10.1016/j.infs0f.2025.107915.

Geetika, N. Kaur, and A. Kaur, “A Semantic-driven approach to
detect Type-4 code clones by using AST and PDG,” Int. J. Inf.
Technol., Jul. 2025, doi: 10.1007/s41870-025-02670-2.

M. Hammad, O. Babur, H. Basit, and M. Brand, “Clone-Seeker:
Effective Code Clone Search Using Annotations,” /EEE Access,
vol. 10, p. 1, Jan. 2022, doi: 10.1109/ACCESS.2022.3145686.

P. R, T. Mg, and J. Kannimoola, “Automated Code Assessment
and Feedback: A Comprehensive Model for Improved
Programming Education,” IEEE Access, vol. PP, p. 1, Jan. 2025,
doi: 10.1109/ACCESS.2025.3554838.

S. Parihar, Z. Dadachanji, P. K. Singh, R. Das, A. Karkare, and A.
Bhattacharya, “Automatic Grading and Feedback using Program
Repair for Introductory Programming Courses,” in Proceedings of
the 2017 ACM Conference on Innovation and Technology in
Computer Science Education, in ITiCSE ’17. New York, NY,
USA: Association for Computing Machinery, 2017, pp. 92-97. doi:
10.1145/3059009.3059026.

G. Jiang, “Design and Implementation of an Automatic Grading
System for Programming Code Based on Artificial Intelligence,”
in 2025 IEEFE 3rd International Conference on Image Processing
and Computer Applications (ICIPCA), 2025, pp. 1846-1851. doi:
10.1109/ICIPCA65645.2025.11139057.

E. Telli and A. Altun, “Effect of semantic encoding strategy
instruction on transfer of learning in e-learning environments,” J.
FEduc. Technol. Online Learn., vol. 6, Jan. 2023, doi:
10.31681/jetol.1205276.

A. Sheoran et al, “Data reporting quality and semantic

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

interoperability increase with community-based data elements
(CoDEs). Analysis of the open data commons for spinal cord injury
(ODC-SCI),” Exp. Neurol., vol. 385, p. 115100, 2025, doi:
https://doi.org/10.1016/j.expneurol.2024.115100.

C. Xu, M. B. Mashhadi, Y. Ma, R. Tafazolli, and J. Wang,
“Generative Semantic Communications With Foundation Models:
Perception-Error ~ Analysis and Semantic-Aware Power
Allocation,” IEEE J. Sel. Areas Commun., vol. 43, no. 7, pp. 2493—
2505, 2025, doi: 10.1109/JSAC.2025.3559120.

Jessica J Santana and Seonghoon Kim, “From Values to Codes:
A computational text analysis of the codification of occupational
ethics,” Organ. Stud., p. 01708406251317255, Feb. 2025, doi:
10.1177/01708406251317255.

A. Brockinton, M. Salnitri, F. Kooner-Evans, J. McAlaney, and S.
Thompson, “An exploratory study on the human component using
a cultural model to define open research topics for secure socio-
technical systems,” Technol. Soc., vol. 83, p. 103000, 2025, doi:
https://doi.org/10.1016/j.techsoc.2025.103000.

Macclarck Pessoa Nery, Severiano José dos Santos
Neto, Roberty Santos Alves, Joao Vitor dos Santos
Santana, Sandro Griza, and Carlos Otavio Damas Martins,

“Development of educational software for stainless steel selection
and evaluating usability using the System Usability Scale (SUS),”
Int. J. Mech. Eng. Educ., vol. 53, no. 4, pp. 957-972, Aug. 2024,
doi: 10.1177/03064190241266978.

S. F. Briahmer et al, “Development of a Serious Game App
(Digimenz) for Patients With Dementia: Prospective Pilot Study
for Usability Testing in Inpatient Treatment and Long-Term Care,”
JMIR Serious Games, vol. 13, p. e69812, 2025, doi:
10.2196/69812.

X. Xu et al., MGF-ESE: An Enhanced Semantic Extractor with
Multi-Granularity Feature Fusion for Code Summarization, vol. 1,
no. 1. Association for Computing Machinery, 2025. doi:
10.1145/3696410.3714544.

L. Deng, X. Ren, C. Ni, M. Liang, D. Lo, and Z. Liu, “Enhancing
Project-Specific Code Completion by Inferring Internal API
Information,” IEEE Trans. Softw. Eng., vol. 51, no. 9, pp. 2566—
2582, 2025, doi: 10.1109/TSE.2025.3592823.

D. Chicco, A. Sichenze, and G. Jurman, 4 simple guide to the use
of Student’s t-test, Mann-Whitney U test, Chi-squared test, and
Kruskal-Wallis test in biostatistics, vol. 18, no. 1. BioMed Central,
2025. doi: 10.1186/s13040-025-00465-6.

Chengliang Wang, Xiaojiao Chen, Yifei Li, Pengju
Wang, Haoming Wang, and Yuanyuan Li, “MetaClassroom: A
New Paradigm and Experience for Programming Education,” J.
Educ. Comput. Res., vol. 63, no. 4, pp. 864-901, Feb. 2025, doi:
10.1177/07356331251322470.

H. Cui, M. Xie, T. Su, C. Zhang, and S. H. Tan, “An Empirical
Study of False Negatives and Positives of Static Code Analyzers
From the Perspective of Historical Issues,” vol. 1, no. 1, pp. 1-26,
2024, [Online]. Available: http://arxiv.org/abs/2408.13855

Z. Chen, S. Villar, L. Chen, and J. Bruna, “On the equivalence
between graph isomorphism testing and function approximation
with GNNs,” in Proceedings of the 33rd International Conference
on Neural Information Processing Systems, Red Hook, NY, USA:
Curran Associates Inc., 2019.

S. Dikici and T. T. Bilgin, “Advancements in automated program
repair: a comprehensive review,” Knowl. Inf. Syst., vol. 67, no. 6,
pp. 4737-4783, 2025, doi: 10.1007/s10115-025-02383-9.

JAIC Vol. 9, No. 6, December 2025: 2950 — 2956

