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This study develops and evaluates an automated assessment model using Abstract 

Syntax Trees (AST) with a view to overcoming the limitations of string-matching 

techniques in the assessment of Fill-in-the-Blank (FIB) programming answers. 

Traditional string-matching techniques have a relatively high False Negative Rate 

(FNR) of 21.5% within the context of detecting semantic equivalence. The current 

model uses semantic structural triangulation to ascertain the semantic similarity of 

student answers. Technical assessment shows that the AST approach markedly 

reduces the FNR to 4.5%. The model demonstrates high reliability (ϰ = 0.83) with 

high classification accuracy (F1 Score = 0.966) which attests to its inferential 

validity. From a pedagogical perspective, system implementation leads to substantial 

learning gains, evidenced by a large effect size (Cohen’s d = 1.82) and a high 

normalized gain (Normalized Gain = 0.90). Multiple regression analysis confirms 

that semantic accuracy is the primary causal factor driving improved student 

comprehension. Ontologically, while AST is valid as a partial representation, its 

limitations—particularly tree isomorphism in recursive structures—highlight the 

need for further exploration of graph isomorphism approaches. Control Flow Graphs 

(CFG) and Data Flow Graphs (DFG) offer more expressive relational models for 

capturing control and data dependencies. The model demonstrates functional 

feasibility with a System Usability Scale (SUS) score of 76.47. Overall, the AST 

Triangulation Model is validated as pedagogically effective, inferentially robust, and 

supportive of evaluative transparency. Future research recommends validating the 

model on more complex tasks and releasing it as open-source to support 

reproducibility. 
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I. INTRODUCTION 

Studies have shown that Python is primarily used across 

the world in CS1 and CS2 curricula where the teaching of 

foundational computational thinking is also integrated. The 

first two levels of the curriculum, for example, CS1, are 

essential for the use of automated assessment systems. CS1 

tends to create the most false negative issues, specifically in 

the Fill-in-the-Blank (FIB) programming assignments. The 

students’ responses are usually semantically equivalent but 

are presented in radically different syntactic forms that the 

string-matching systems fail to identify as correct. 

In the CS2 curriculum, more complex topics are 

introduced, such as data structures and algorithms, which 

challenge the representational limits of pure Abstract Syntax 

Tree (AST) models. The recursive logic and complex data 

flows are significant problems that the AST-based systems 

have. It becomes necessary to shift to graph isomorphism, 

especially Control Flow Graphs (CFG) and Data Flow Graphs 

(DFG) to accurately capture control flows and semantic 

equivalence in the students' algorithms at CS2. 

Agarwal showed that Python is the main language used for 

introductory programming courses for over 70% of the 

world’s top universities [1]. This extensive use has Python 

being incorporated into automated assessment tools and other 

digital learning tools. Nevertheless, most of these tools that 

automate assessment focus on string matching techniques that 

do literal, line-by-line comparisons of code, ignoring the 

meaning and the logic of execution[2], [3]. Cheang has shown 
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that for elementary programming tasks, including FIB-type 

questions, asymmetry in the code can lead to a 28% false 

negative rate [4]. This means that the system will mark a 

logically true answer incorrect because the system will focus 

on syntactic differences. 

In Indonesia, the national digital training programme as 

well as information technology programmes in Python have 

digital training programmes incorporated[5]. Prasetyo et al. 

states that above 60% of tertiary educational institutions in 

Indonesia integrated Python into LMS assessments [6]. 

However, these systems lack in being only text matching 

systems. This leads to frustration and a sense of inequity in 

assessment because of unconsidered semantic differences in 

student answers. 

FIB activities are used to evaluate students’ grasp of syntax 

and fundamental logic. However, some poorly designed 

automatic scoring systems misclassify answers that are 

functionally equivalent. Consider two function definitions 

that count the even numbers in a list – they may be different 

in syntax but compute the same result. 

 
# Answer 1 

def count_even(nums): 

    return len([x for x in nums 

if x % 2 == 0]) 

# Answer 2 

def count_even(nums): 

    count = 0 

    for n in nums: 

        if n % 2 == 0: 

            count += 1 

    return count 

 

Even though the systems that use string matching fail to see 

the equivalence, both definitions produce the same output for 

all valid inputs. This leads to unfair scoring. In contrast, an 

Abstract Syntax Tree (AST) approach would permit detection 

of the equivalent definitions and thus achieve a definition of 

fair scoring [7]. Despite AST’s considerable use in areas such 

as plagiarism detection and evaluation of semantic similarity, 

direct use of this technique to automate assessment of FIB 

programming tasks remains unexplored [8]. 

Notwithstanding its structural benefits, there remain 

studies without a semantic assessment framework using AST, 

particularly geared towards scenarios involving FIB. No other 

work leverages AST as a lightweight, efficient structural filter 

in automated assessment systems. Moreover, there is still no 

fully developed approach that pairs AST with execution 

results and expert critiques alongside one another, in a 

coherent fashion, to demonstrate semantic equivalence across 

student work [9]. 

This paper outlines a Lightweight and Valid Semantic 

Triangulation Model, which is directed towards automating 

FIB assessments within the field of Python training. The 

model in this instance looks to AST as a primary structural 

filter with execution results and expert annotations still 

retained as a filter. Validation is conducted through means of 

three methods: equivalent output comparison, inter-rater 

agreement (Cohen’s Kappa > 0.8), and AST structural 

likeness evaluated by means of tree isomorphism. The 

intention is to curb false negatives, enhance precision in 

scoring, and uphold the perceived fairness of automated 

systems from the students' perspective [10]. 

Ontologically, the research argues that each programme 

has an abstract syntactic structure that captures its logic. The 

AST is treated as a partial semantic representation that 

captures some logical relations underlying the surface syntax, 

yet it falls short concerning some aspects of dynamism, such 

as the consequences of execution, runtime interaction, and 

execution behaviours[11]. Therefore, the AST serves as an 

approximation model, the validity of which is demonstrated 

through execution traces and expert evaluations. 

The study is anchored epistemologically in evaluative-

experimental design and post-positivism. Scientific truth is 

not an absolute construct but a product of triangulating 

empirical data from several sources. The integration of 

programme execution results, expert annotations, and AST 

analysis, in which semantic equivalence is sustained, enables 

validation. The three, in unison, constitute an epistemic 

triangulation approach that isolates the model's internal 

validity and provides an empirical comparison of its efficacy 

against traditional string matching methods. 

 

 

II. METHOD  

This study aims to assess the technical validity and the 

pedagogical value of a semantic assessment system based on 

Abstract Syntax Tree (AST) for Fill-in-the-Blank (FIB) 

Python programming activities. The methodology involves 

two main tracks. The first is the development and validation 

of the FIB assessment system based on a Research and 

Development (R&D) model. The second is the assessment of 

the FIB learning outcomes using a quasi-experimental design 

between groups. 

 

A. Philosophical Foundations of FIB Activities 

Fill-in-the-Blank (FIB) activities require students to 

complete programming tasks by filling in the gaps with code 

that shows an understanding of the logic of the programme. 

From an ontological approach, FIB responses are treated as 

abstract semantic entities with an Abstract Syntax Tree (AST) 

representation. The AST is a partial representation of the 

programme logic that can be assessed for empirical validity 

through structural equivalence and execution assessment [12]. 

With the adoption of structural realism, the system is assumed 

to capture the programme logic in an objective manner as long 

as the semantic interplay between the system components is 

preserved, even when their stylistic representations vary. 

In identifying the epistemological stance, the method is 

defined as hybrid. The system’s inferences on FIB responses 

are examined alongside quantitative measures encompassing 

accuracy, precision, and F1-score, which are also validated by 

experts with significant inter-rater reliability. Data 

triangulation is employed to guard the inferential validity and 

to build social trust in the automated evaluation system [13].   
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B. Research Design for FIB Evaluation   

This study employs an R&D framework with iterative 

prototyping and integrates a quasi-experimental design to 

evaluate instruction on the constructed Fill-in-the-Blank 

(FIB) assessment system. These two methodologies are 

designed to run together and improve each other. The 

technical validation’s purpose is to measure the performance 

of the AST Evaluator as a semantic classifier for FIB 

responses, which will utilise three different evaluation 

techniques. The first technique is accuracy analysis, where the 

performance of the system is evaluated against a truth 

benchmark defined by experts using precision, recall, F1-

score, and the false negative rate to define ground truth [14]. 

The second technique is reliability validation, where expert 

annotations are evaluated using Cohen’s Kappa alongside the 

system-generated scores and the scores of the experts. Third, 

qualitative error analysis informs iterative design, especially 

in the recursive and complex lambda functions [15]. 

The purpose of the pedagogical evaluation is to identify 

how the FIB-AST system functions in enhancing the learning 

outcomes and retention rates of students. The experimental 

design consists of one experimental group (n=26) which uses 

the FIB-AST system which generates automated semantic 

feedback, and one control group (n=25) which uses 

conventional teaching strategies. The same instructional 

materials and FIB tasks were given to both groups.  

The assessments are given in three phases: Pre-Test, Post-

Test, and Delay-Test. The Delay-Test is intended to measure 

transfer learning. Here, students determine semantic 

equivalence within new FIB tasks and previously learned 

knowledge. The Delay-Test items are structurally new and do 

not repeat previous questions. They present new situations 

that are logically the same, although differing in wording [16]. 

The validity of the test instruments was ensured by subject-

matter experts while reliability was evaluated using 

Cronbach’s alpha. 

The analysis of data typically involves various quantitative 

methods. An Independent Sample T-Test is conducted to 

assess group differences in performance, and a Paired Sample 

T-Test is used to analyse score differences in the experimental 

group. To determine intervention effects, Cohen's d is used in 

conjunction with Normalised Gain, which assesses 

improvement relative to baseline scores. Furthermore, the 

conceptual variability is examined through the analysis of 

standard deviation’s reduction. 

 

C. Development of Components and System Descriptions 

The system development phases for automated semantic-

based evaluation are detailed in Table I. Each phase describes 

the student response trajectory, encompassing code 

submission, Abstract Syntax Tree (AST) formation, 

canonicalization, structural comparison, execution-

integration validation, score construction, and expert 

agreement evaluation. Table I summarizes each development 

phase, its corresponding main component, and its description 

TABEL I 

SYSTEM DEVELOPMENT STAGES 

Phase Component Description 

1 FIB Input Students fill in missing code 

segments using Python strings. 

2 AST Builder Student responses are parsed into 

ASTs using Python’s ast module. 

3 AST 

Canonicalisati

on 

Semantic transformation is 

applied to eliminate syntactic 

noise and extract logical patterns. 

4 AST 

Comparison 

Student ASTs are compared to 

reference keys using tree 

isomorphism and subtree 

matching. 

5 Output 

Execution 

Code is executed in a sandbox 

environment; outputs are 

compared using hash functions. 

6 Scoring Final scores are computed: 70% 

from AST similarity, 30% from 

output equivalence. 

7 Expert 

Validation  

System scores are compared with 

manual expert annotations using 

Cohen’s Kappa. 

8 Accuracy 

Evaluation  

Precision, recall, F1-score, and 

false negative rate are calculated 

against expert ground truth 

 

To fulfil the educational goals of Fill-in-the-Blank (FIB) 

activities, a 70:30 ratio distribution between the Abstract 

Syntax Tree (AST) structure and the execution output score 

has been implemented. This approach emphasises the logical 

structure of students' code rather than concentrating 

exclusively on the output. The AST section determines 

whether students produce a semantically equivalent logic, and 

the execution output serves as a layer for functional 

verification. This scoring ratio may be modified in the case of 

open-ended projects to best appreciate functional realism 

[17]. 

The process of canonicalisation includes the removal of 

syntactic metadata (linenos, col_offsets, and ctx), 

normalisation of local variable names, lexicographic ordering 

of unordered code blocks, and the syntactic restructuring of 

control flows, such as the transformation of for loops to while 

loops, when their logical meanings are semantically 

equivalent. Consider the following example: 

 
# Original 

for i in range(n): 

    total += i 

 

# After transformation 

i = 0 

while i < n: 

    total += i 

    i += 1 

 

This transformation reduces syntactic noise and extracts 

stable logical patterns which allow the AST to be compared 

man_ 
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D. Validation and Analysis of FIB Responses 

As part of the validation of the system, the analyses of 200 

FIB responses were conducted where 2 experts performed 

independent analysis of the responses. These responses were 

classified into four types: Fully correct (about 35%), Syntactic 

(about 15%), Minor Semantic (about 25%), and Logical or 

Output (about 25%). Inter-rater reliability for 50 responses 

was calculated and yielded a value of Cohen’s Kappa 0.88. 

Data analysis occurred on three levels. First, dimensions of 

reliability and accuracy were assessed using Cohen's Kappa 

with the other measures of precision, recall, F1-score, and the 

False Negative rate. Second, the alignment of the system-

generated scores and the expert-assigned scores were 

evaluated using Pearson correlation. Third, qualitative error 

analysis was conducted focusing on the false negatives and 

false positives to expose weaknesses in the canonicalisation 

and subtree matching algorithms. These analyses provided the 

basis for system refinements. 

 

E. Ethics and Reproducibility 

This study was ethically approved by the programming 

faculty within the Department of Information Technology at 

the State Polytechnic of Malang. To protect confidentiality, 

all participant data were anonymised. The open-access 

GitHub repository contains the source code for the AST 

Evaluator, the anonymised dataset, and the scripts for the 

statistical analyses conducted. This is to facilitate independent 

verification and to provide transparency around the methods 

employed, in the spirit of open science [19], [20]. 

 

 

III. RESULT AND DISCUSSION 

This part explains the outcomes derived from the three 

phases of the study: (1) technical validation along with system 

acceptance, (2) analysis of the pedagogical effectiveness, and 

(3) epistemological evaluation of the evaluator based on AST. 

 

A. Technical Validation and System Acceptance   

Students, instructors, and administrators engaged in a 

black-box testing procedure which ascertained that all 

features of the system function as expected. The system met 

the operational feasibility minimum requirements. Table II 

provides the results of black-box testing.   

TABEL II 

BLACK-BOX TESTING RESULTS   

User Group Features Tested Result   

Students Course, Module, FIB, Test, 

Results 

Valid   

Instructors Content Management & 

Automated FIB Items 

Valid   

Administrators Data Management & 

Reporting 

Valid   

 

The System Usability Scale (SUS) evaluates user 

satisfaction with the developed system [21], [22]. Table III 

presents the distribution of SUS scores including the range, 

number of respondents, and the respective scores. In assessing 

subjective usability and system acceptance, the SUS 

questionnaire was distributed. Table III summarizes the 

distribution of 35 respondent scores, resulting in an average 

score of 76.47, which strongly indicates the functional 

feasibility of the system. 

TABEL III 

DISTRIBUTION OF SUS SCORES   

SUS 

Score 

Range 

Number of 

Respondents 

Individual Scores   

40–49 1 45 

50–59 6 50, 52.5, 55, 55, 57.5, 57.5   

60–69 3 65, 65, 67.5   

70–79 7 70, 70, 72.5, 75, 75, 77.5, 77.5   

80–89 10 80, 80, 82.5, 82.5, 82.5, 85, 85, 

85, 87.5, 87.5   

90–100 8 90, 90, 90, 92.5, 92.5, 95, 95, 

100, 100, 100   

 

In order to illustrate the system's effectiveness in resolving 

the false negative issues discussed in the introduction, a 

comparison was made with a string matching–based system 

that used the same dataset. 

Previous analyses suggest substantial difficulty with the 

identification of semantic equivalence with string matching 

methods, leading to false negative rates of over 20% during 

static evaluations[23]. In contrast, the current system 

noticeably improved the false negative reduction and 

alignment with expert annotations, achieving substantial 

agreement as measured by Cohen’s Kappa [24].   

FIB and AST evaluator achieved a Cohen’s Kappa of 0.83 

compared to a value of 0.61 with string matching, with false 

negative rates of 21.5 and 4.5% respectively as shown in 

Table IV.  The results suggest the integrated AST technology 

identifies semantic equivalence which string based 

evaluations fail to achieve, leading to greater accuracy and 

consistency in evaluations.   

 

B. Pedagogical Effectiveness Analysis   

B.1. Between-Group Comparison   

 

An Independent Sample T-Test framework was employed 

for evaluations over the three measurement periods of Pre-

Test, Post-Test, and Delay-Test. These results are 

summarised in Table IV. 
TABLE IV 

SUMMARY OF STATISTICAL ANALYSIS WITH SIGNIFICANCE INDICATORS 

Group Test Phase Mean 

Score 

t-value p-

value   

Experimental Pre-Test 27.45 −0.046 0.963   

Control Pre-Test 27.99       

Experimental Post-Test 92.92 4.488 0.000   

Control Post-Test 49.68       

Experimental Delay-Test 81.84 3.387 0.001   

Control Delay-Test 49.52       
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Experimental Pre → Post 27.45 

→ 

92.92 

7.342 0.000   

Experimental Post → 

Delay 

92.92 

→ 

81.84 

1.780 0.087   

Control Pre → Post 27.99 

→ 

49.68 

2.019 0.055   

Control Post → 

Delay 

49.68 

→ 

49.52 

0.014 0.989   

  

The Independent Sample T-Test demonstrated statistically 

significant improvement for the experimental group (0.000) 

and significant retention within the Delay-Test phase (0.001). 

The intervention effect size was very large (Cohen’s d = 1.82), 

classified as “very large effect” according to Kraft’s criteria. 

A Normalized Gain of 0.90 indicates a substantial increase in 

conceptual understanding [25]. There was a reduction in the 

standard deviation from 39.48 (Pre-Test) to 13.20 (Post-Test) 

suggesting increased homogenisation of student 

comprehension within the experimental group. 

 

B.2. Multiple Regression and Gain Contextualisation 

The multiple regression analysis targeted the predictive 

impact of each variable on the Post-Test score improvement. 

Among the AST structural score components, the strongest 

contribution was noted in the structural scoring AST 

component compared to execution output (β = 0.28) and 

response time (β = 0.12) with (β = 0.61, p < 0.01). Results of 

this analysis substantiate the importance of semantic fairness 

most prominently AST scoring in understanding student 

improvement.   

The large gain (g = 0.90) is to be interpreted with caution 

as this reflects two conditions. One includes the control 

group’s Post-Test lower baseline performance (49.68) 

suggesting issues with assessing initial performance. The 

second is that the FIB+AST system functioned as a highly 

accurate remedial feedback tool and effectively removed 

semantic penalties of false negatives. Literature describes 

such sizable gains as typical in intensive remedial 

programmes [26].   

 

C. AST Evaluator Validation   

C.1. Scoring Weight Trade-Off   

For a scoring scheme of 70:30 (AST:Output) and two 

alternatives the analysis focused on the trade-off between 

false negatives (FNR) and false positives (FP). The 70:30 

scheme yielded the lowest FNR, despite a slightly higher FP 

rate. A 70:30 ratio was adopted based on axiological 

principles of assessment: unfair penalties (false negatives) are 

more psychologically and pedagogically damaging than 

minor recognition errors (false positives) [27]. 

 

 

 

C.2. Limitations of Canonicalization and Tree Isomorphism 

The AST Evaluator had an F1-Score of 0.966 and thus, 

high classification accuracy. Yet, the presence of false 

negatives revealed the system’s ontological limitations: 

recursive structures, nested lambda functions, and nested 

ternary operators were not aligned with canonical structures. 

Such limitations stem from the rigidity of tree isomorphism, 

which strictly analyzes the framework of interdependencies, 

while Abstract Syntax Trees (ASTs) are primarily Directed 

Acyclic Graphs (DAGs) [28]. Consequently, tree 

isomorphism does not capture the abstract semantic 

relationships anchored on control and data flow. According to 

Dikici et al. [29], semantic code recognition based on AST 

edit distance is ineffective due to structurally different code. 

 

D. Ontological and Epistemological Analysis 

D1. Ontological Foundation: Moving from Syntax to 

Relational Representation 

This study adopts the perspective of Ontic Structural 

Realism (OSR) with the understanding that program logic 

constitutes a key structural reality. At first the Abstract Syntax 

Tree (AST) was treated as an ontological set as a 

representation of the syntactic structure. However, in the 

evaluation, the reliance on the AST as an adequate 

representation was shown to be an overestimation. The 

canonicalization failures associated with recursive constructs 

indicate that the tree isomorphism thesis fails to adequately 

capture the essential structural reality of program logic. 

To address these issues, this study proposes an ontological 

shift towards graph-based models, particularly Control Flow 

Graphs (CFG) and Data Flow Graphs (DFG). This shift 

recognises that relational ontologies consisting of control 

flow and data dependencies are a more accurate reflection of 

program logic than surface syntax. The CFGs and DFGs not 

only embody vital semantic relations but also aid in 

pinpointing semantic equivalence despite varied coding 

approaches. The structural integrity that graph models 

provide also enhances the objectivity of system assessments, 

offering a potential for valid classification that bypasses 

syntactic alterations. 

 

D.2. Epistemology: Post-Positivism and Uncertainty 

The evaluation system is grounded in a post-positivist 

epistemology, one that treats inference to the truth as non-

absolute and probabilistic. The existencesss of a false positive 

(FP) finding in automated semantic validation demonstrates 

the intrinsic limitations of observation. Multiple outputs that 

are similar may not logically mean the same thing. This 

speaks to the uncertainty inherent in automated semantic 

validation. The empirical data was validated systemically 

through cross-triangulation : 

a. Inferential Validity: Evaluated through internal 

consistency measures (F1-Score, Recall) of the AST and 

the system's accuracy in replicating correct structural 

decisions. 
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b. Pedagogical Validity: Evaluated through external 

reliability (expert annotations, κ), practical impact 

(Normalised Gain, g), and the return on investment 

measures (ROI). 

TABLE V 

VALIDATION OF PEDAGOGICAL FEASIBILITY 

Analytical 

Aspect 

Key 

Findings 

Quantitative 

Validation 

Philosophical 

Validation 

Technical 

Validity & 

Usability 

FIB+AST 

system is 

functional 

and 

exhibits 

high 

usability. 

SUS = 76.47;  

FNR = 4.5% 

AST serves as 

a partial 

structural 

representation 

prior to 

expansion. 

Pedagogical 

Effectiveness 

Significant 

learning 

gains 

supported 

by fairness 

validation. 

Cohen’s d = 

1.82;  

g = 0.90; 

β_AST = 0.61 

Semantic 

accuracy 

ensures 

evaluative 

fairness; 

promotes 

transfer 

learning. 

AST 

Evaluator 

Performance 

High 

inferential 

accuracy 

and strong 

expert 

reliability. 

F1-Score = 

0.966;  

κ = 0.83 

Inference is 

probabilistic; 

demands 

epistemic 

transparency 

via confidence 

score. 

 

A Confidence Score, which is based on Tree Edit Distance, 

is produced and used to calibrate inferences. This score 

increases transparency and aids decision-making, offering a 

form of control to the user in cases of extreme uncertainty and 

manual validation. Thus, the system is a calibrated, inferential 

instrument of revision and not an absolute one. 

The following Table V captures key findings, based on the 

post-positivist epistemological paradigm, which 

demonstrates the technical feasibility and pedagogical impact 

of the AST-Graph based evaluation system while outlining its 

pedagogical impact within the probabilistic framework of the 

system. 

 

IV. CONCLUSION 

A. Summary  

This study provides two main contributions. First, 

technically, the AST-based model significantly lowers the 

false negative rate from 21.5% (observed in string matching) 

to 4.5%. This indicates that AST can be considered an 

effective semantic filter for the detection of logical 

equivalence in student answers. Second, pedagogically, 

semantic accuracy stands out as the foremost factor in driving 

improvements in significant learning. The size of the impact 

(Cohen’s d = 1.82) and the multiple regression analysis 

determine that pure AST scores most strongly predict 

increased comprehension. 

The AST-based semantic evaluation model demonstrates 

high construct validity and construct reliability. It surpasses 

the traditional syntactic methods with its validated results and 

excellent classification results (F1 = 0.966; κ = 0.83). A 

validated triangulation framework provides a solid epistemic 

base. The inferences a system generates can be treated as 

probabilistic ground truth, permitting teachers to spend less 

time manual grading and more time on the analysis of 

ambiguous cases. 

AST is, ontologically, a valid semantic representation. 

However, the limitations of tree isomorphism in recognizing 

recursive structures and nested lambda functions reveal the 

need to attentively improve nested tree structures for AST to 

achieve its full potential as a more powerful semantic analysis 

model. In its axiological dimension, the system reveals 

functional feasibility and solid user acceptance, illustrated by 

a System Usability Scale (SUS) score of 76.47, which refers 

to extended usability. Usability and user trust are furthered by 

features such as AST visualization and confidence scoring. 

Moreover, the AST model has a quantifiable pedagogical 

effect. A normalized gain of 0.90 with a low standard 

deviation suggests some degree of conceptual 

homogenization. Consistent retention outcomes suggest that 

semantic fairness—not feedback speed—primarily aids in the 

transfer of learning. 

 

B. Recommendations 
Future research should expand the scope of semantic 

evaluation. It would be beneficial to use graph isomorphism 

techniques based on Control Flow Graphs (CFG) and Data 

Flow Graphs (DFG) to improve upon the limitations of tree 

isomorphism. More complex problems could include 

detecting semantic errors, performing dynamic code analysis, 

and structural assessments across various programming 

languages. Generalization of the AST would also need to be 

assessed on other languages, such as Java or C++. Future 

research could also explore the use of Large Language 

Models (LLMs) to enable flexible and situational semantic 

evaluations. Longitudinal studies are recommended to assess 

long-term retention of learning outcomes. Implementing 

additional Delay-Tests at intervals of one and three months 

would help measure the durability of learning effects. 

Additionally, it would be valuable to correlate student activity 

logs with score homogenization to identify effective 

interaction patterns. In line with open science principles, it is 

strongly encouraged to publish anonymized datasets and the 

source code for the AST Evaluator in open repositories. This 

practice promotes external validation and ensures the 

reproducibility of results. 
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