
Journal of Applied Informatics and Computing (JAIC)

Vol.9, No.6, December 2025, pp. 2950~2956

e-ISSN: 2548-6861 2950

http://jurnal.polibatam.ac.id/index.php/JAIC

Abstract Syntax Tree Model for Minimizing False Negative in Semantic

Evaluation of Python Fill-in-the-Blank

Usman Nurhasan1*, Didik Dwi Prasetya2, Syaad Patmanthara3,

* Departemen Teknik Elektro dan Informatika, Universitas Negeri Malang, Indonesia

usman.nurhasan.2505349@students.um.ac.id1, didikdwi@um.ac.id2, syaad.ft@um.ac.id3

Article Info ABSTRACT
Article history:

Received 2025-09-08

Revised 2025-11-04

Accepted 2025-11-08

This study develops and evaluates an automated assessment model using Abstract

Syntax Trees (AST) with a view to overcoming the limitations of string-matching

techniques in the assessment of Fill-in-the-Blank (FIB) programming answers.

Traditional string-matching techniques have a relatively high False Negative Rate

(FNR) of 21.5% within the context of detecting semantic equivalence. The current

model uses semantic structural triangulation to ascertain the semantic similarity of

student answers. Technical assessment shows that the AST approach markedly

reduces the FNR to 4.5%. The model demonstrates high reliability (ϰ = 0.83) with

high classification accuracy (F1 Score = 0.966) which attests to its inferential

validity. From a pedagogical perspective, system implementation leads to substantial

learning gains, evidenced by a large effect size (Cohen’s d = 1.82) and a high

normalized gain (Normalized Gain = 0.90). Multiple regression analysis confirms

that semantic accuracy is the primary causal factor driving improved student

comprehension. Ontologically, while AST is valid as a partial representation, its

limitations—particularly tree isomorphism in recursive structures—highlight the

need for further exploration of graph isomorphism approaches. Control Flow Graphs

(CFG) and Data Flow Graphs (DFG) offer more expressive relational models for

capturing control and data dependencies. The model demonstrates functional

feasibility with a System Usability Scale (SUS) score of 76.47. Overall, the AST

Triangulation Model is validated as pedagogically effective, inferentially robust, and

supportive of evaluative transparency. Future research recommends validating the

model on more complex tasks and releasing it as open-source to support

reproducibility.

Keyword:

Abstract Syntax Tree,

Epistemology of Evaluation,

 Fill-in-the-Blank,

Pedagogical Effectiveness,

Semantic Evaluation,

This is an open access article under the CC–BY-SA license.

I. INTRODUCTION

Studies have shown that Python is primarily used across

the world in CS1 and CS2 curricula where the teaching of

foundational computational thinking is also integrated. The

first two levels of the curriculum, for example, CS1, are

essential for the use of automated assessment systems. CS1

tends to create the most false negative issues, specifically in

the Fill-in-the-Blank (FIB) programming assignments. The

students’ responses are usually semantically equivalent but

are presented in radically different syntactic forms that the

string-matching systems fail to identify as correct.

In the CS2 curriculum, more complex topics are

introduced, such as data structures and algorithms, which

challenge the representational limits of pure Abstract Syntax

Tree (AST) models. The recursive logic and complex data

flows are significant problems that the AST-based systems

have. It becomes necessary to shift to graph isomorphism,

especially Control Flow Graphs (CFG) and Data Flow Graphs

(DFG) to accurately capture control flows and semantic

equivalence in the students' algorithms at CS2.

Agarwal showed that Python is the main language used for

introductory programming courses for over 70% of the

world’s top universities [1]. This extensive use has Python

being incorporated into automated assessment tools and other

digital learning tools. Nevertheless, most of these tools that

automate assessment focus on string matching techniques that

do literal, line-by-line comparisons of code, ignoring the

meaning and the logic of execution[2], [3]. Cheang has shown

mailto:didikdwi@um.ac.id
mailto:syaad.ft@um.ac.id
https://creativecommons.org/licenses/by-sa/4.0/

JAIC e-ISSN: 2548-6861

Abstract Syntax Tree Model for Minimizing False Negative in Semantic Evaluation of Python Fill-in-the-Blank

(Usman Nurhasan, Didik Dwi Prasetya, Syaad Patmanthara)

2951

that for elementary programming tasks, including FIB-type

questions, asymmetry in the code can lead to a 28% false

negative rate [4]. This means that the system will mark a

logically true answer incorrect because the system will focus

on syntactic differences.

In Indonesia, the national digital training programme as

well as information technology programmes in Python have

digital training programmes incorporated[5]. Prasetyo et al.

states that above 60% of tertiary educational institutions in

Indonesia integrated Python into LMS assessments [6].

However, these systems lack in being only text matching

systems. This leads to frustration and a sense of inequity in

assessment because of unconsidered semantic differences in

student answers.

FIB activities are used to evaluate students’ grasp of syntax

and fundamental logic. However, some poorly designed

automatic scoring systems misclassify answers that are

functionally equivalent. Consider two function definitions

that count the even numbers in a list – they may be different

in syntax but compute the same result.

Answer 1

def count_even(nums):

 return len([x for x in nums

if x % 2 == 0])

Answer 2

def count_even(nums):

 count = 0

 for n in nums:

 if n % 2 == 0:

 count += 1

 return count

Even though the systems that use string matching fail to see

the equivalence, both definitions produce the same output for

all valid inputs. This leads to unfair scoring. In contrast, an

Abstract Syntax Tree (AST) approach would permit detection

of the equivalent definitions and thus achieve a definition of

fair scoring [7]. Despite AST’s considerable use in areas such

as plagiarism detection and evaluation of semantic similarity,

direct use of this technique to automate assessment of FIB

programming tasks remains unexplored [8].

Notwithstanding its structural benefits, there remain

studies without a semantic assessment framework using AST,

particularly geared towards scenarios involving FIB. No other

work leverages AST as a lightweight, efficient structural filter

in automated assessment systems. Moreover, there is still no

fully developed approach that pairs AST with execution

results and expert critiques alongside one another, in a

coherent fashion, to demonstrate semantic equivalence across

student work [9].

This paper outlines a Lightweight and Valid Semantic

Triangulation Model, which is directed towards automating

FIB assessments within the field of Python training. The

model in this instance looks to AST as a primary structural

filter with execution results and expert annotations still

retained as a filter. Validation is conducted through means of

three methods: equivalent output comparison, inter-rater

agreement (Cohen’s Kappa > 0.8), and AST structural

likeness evaluated by means of tree isomorphism. The

intention is to curb false negatives, enhance precision in

scoring, and uphold the perceived fairness of automated

systems from the students' perspective [10].

Ontologically, the research argues that each programme

has an abstract syntactic structure that captures its logic. The

AST is treated as a partial semantic representation that

captures some logical relations underlying the surface syntax,

yet it falls short concerning some aspects of dynamism, such

as the consequences of execution, runtime interaction, and

execution behaviours[11]. Therefore, the AST serves as an

approximation model, the validity of which is demonstrated

through execution traces and expert evaluations.

The study is anchored epistemologically in evaluative-

experimental design and post-positivism. Scientific truth is

not an absolute construct but a product of triangulating

empirical data from several sources. The integration of

programme execution results, expert annotations, and AST

analysis, in which semantic equivalence is sustained, enables

validation. The three, in unison, constitute an epistemic

triangulation approach that isolates the model's internal

validity and provides an empirical comparison of its efficacy

against traditional string matching methods.

II. METHOD

This study aims to assess the technical validity and the

pedagogical value of a semantic assessment system based on

Abstract Syntax Tree (AST) for Fill-in-the-Blank (FIB)

Python programming activities. The methodology involves

two main tracks. The first is the development and validation

of the FIB assessment system based on a Research and

Development (R&D) model. The second is the assessment of

the FIB learning outcomes using a quasi-experimental design

between groups.

A. Philosophical Foundations of FIB Activities

Fill-in-the-Blank (FIB) activities require students to

complete programming tasks by filling in the gaps with code

that shows an understanding of the logic of the programme.

From an ontological approach, FIB responses are treated as

abstract semantic entities with an Abstract Syntax Tree (AST)

representation. The AST is a partial representation of the

programme logic that can be assessed for empirical validity

through structural equivalence and execution assessment [12].

With the adoption of structural realism, the system is assumed

to capture the programme logic in an objective manner as long

as the semantic interplay between the system components is

preserved, even when their stylistic representations vary.

In identifying the epistemological stance, the method is

defined as hybrid. The system’s inferences on FIB responses

are examined alongside quantitative measures encompassing

accuracy, precision, and F1-score, which are also validated by

experts with significant inter-rater reliability. Data

triangulation is employed to guard the inferential validity and

to build social trust in the automated evaluation system [13].

 e-ISSN: 2548-6861

JAIC Vol. 9, No. 6, December 2025: 2950 – 2956

2952

B. Research Design for FIB Evaluation

This study employs an R&D framework with iterative

prototyping and integrates a quasi-experimental design to

evaluate instruction on the constructed Fill-in-the-Blank

(FIB) assessment system. These two methodologies are

designed to run together and improve each other. The

technical validation’s purpose is to measure the performance

of the AST Evaluator as a semantic classifier for FIB

responses, which will utilise three different evaluation

techniques. The first technique is accuracy analysis, where the

performance of the system is evaluated against a truth

benchmark defined by experts using precision, recall, F1-

score, and the false negative rate to define ground truth [14].

The second technique is reliability validation, where expert

annotations are evaluated using Cohen’s Kappa alongside the

system-generated scores and the scores of the experts. Third,

qualitative error analysis informs iterative design, especially

in the recursive and complex lambda functions [15].

The purpose of the pedagogical evaluation is to identify

how the FIB-AST system functions in enhancing the learning

outcomes and retention rates of students. The experimental

design consists of one experimental group (n=26) which uses

the FIB-AST system which generates automated semantic

feedback, and one control group (n=25) which uses

conventional teaching strategies. The same instructional

materials and FIB tasks were given to both groups.

The assessments are given in three phases: Pre-Test, Post-

Test, and Delay-Test. The Delay-Test is intended to measure

transfer learning. Here, students determine semantic

equivalence within new FIB tasks and previously learned

knowledge. The Delay-Test items are structurally new and do

not repeat previous questions. They present new situations

that are logically the same, although differing in wording [16].

The validity of the test instruments was ensured by subject-

matter experts while reliability was evaluated using

Cronbach’s alpha.

The analysis of data typically involves various quantitative

methods. An Independent Sample T-Test is conducted to

assess group differences in performance, and a Paired Sample

T-Test is used to analyse score differences in the experimental

group. To determine intervention effects, Cohen's d is used in

conjunction with Normalised Gain, which assesses

improvement relative to baseline scores. Furthermore, the

conceptual variability is examined through the analysis of

standard deviation’s reduction.

C. Development of Components and System Descriptions

The system development phases for automated semantic-

based evaluation are detailed in Table I. Each phase describes

the student response trajectory, encompassing code

submission, Abstract Syntax Tree (AST) formation,

canonicalization, structural comparison, execution-

integration validation, score construction, and expert

agreement evaluation. Table I summarizes each development

phase, its corresponding main component, and its description

TABEL I

SYSTEM DEVELOPMENT STAGES

Phase Component Description

1 FIB Input Students fill in missing code

segments using Python strings.

2 AST Builder Student responses are parsed into

ASTs using Python’s ast module.

3 AST

Canonicalisati

on

Semantic transformation is

applied to eliminate syntactic

noise and extract logical patterns.

4 AST

Comparison

Student ASTs are compared to

reference keys using tree

isomorphism and subtree

matching.

5 Output

Execution

Code is executed in a sandbox

environment; outputs are

compared using hash functions.

6 Scoring Final scores are computed: 70%

from AST similarity, 30% from

output equivalence.

7 Expert

Validation

System scores are compared with

manual expert annotations using

Cohen’s Kappa.

8 Accuracy

Evaluation

Precision, recall, F1-score, and

false negative rate are calculated

against expert ground truth

To fulfil the educational goals of Fill-in-the-Blank (FIB)

activities, a 70:30 ratio distribution between the Abstract

Syntax Tree (AST) structure and the execution output score

has been implemented. This approach emphasises the logical

structure of students' code rather than concentrating

exclusively on the output. The AST section determines

whether students produce a semantically equivalent logic, and

the execution output serves as a layer for functional

verification. This scoring ratio may be modified in the case of

open-ended projects to best appreciate functional realism

[17].

The process of canonicalisation includes the removal of

syntactic metadata (linenos, col_offsets, and ctx),

normalisation of local variable names, lexicographic ordering

of unordered code blocks, and the syntactic restructuring of

control flows, such as the transformation of for loops to while

loops, when their logical meanings are semantically

equivalent. Consider the following example:

Original

for i in range(n):

 total += i

After transformation

i = 0

while i < n:

 total += i

 i += 1

This transformation reduces syntactic noise and extracts

stable logical patterns which allow the AST to be compared

man_

JAIC e-ISSN: 2548-6861

Abstract Syntax Tree Model for Minimizing False Negative in Semantic Evaluation of Python Fill-in-the-Blank

(Usman Nurhasan, Didik Dwi Prasetya, Syaad Patmanthara)

2953

D. Validation and Analysis of FIB Responses

As part of the validation of the system, the analyses of 200

FIB responses were conducted where 2 experts performed

independent analysis of the responses. These responses were

classified into four types: Fully correct (about 35%), Syntactic

(about 15%), Minor Semantic (about 25%), and Logical or

Output (about 25%). Inter-rater reliability for 50 responses

was calculated and yielded a value of Cohen’s Kappa 0.88.

Data analysis occurred on three levels. First, dimensions of

reliability and accuracy were assessed using Cohen's Kappa

with the other measures of precision, recall, F1-score, and the

False Negative rate. Second, the alignment of the system-

generated scores and the expert-assigned scores were

evaluated using Pearson correlation. Third, qualitative error

analysis was conducted focusing on the false negatives and

false positives to expose weaknesses in the canonicalisation

and subtree matching algorithms. These analyses provided the

basis for system refinements.

E. Ethics and Reproducibility

This study was ethically approved by the programming

faculty within the Department of Information Technology at

the State Polytechnic of Malang. To protect confidentiality,

all participant data were anonymised. The open-access

GitHub repository contains the source code for the AST

Evaluator, the anonymised dataset, and the scripts for the

statistical analyses conducted. This is to facilitate independent

verification and to provide transparency around the methods

employed, in the spirit of open science [19], [20].

III. RESULT AND DISCUSSION

This part explains the outcomes derived from the three

phases of the study: (1) technical validation along with system

acceptance, (2) analysis of the pedagogical effectiveness, and

(3) epistemological evaluation of the evaluator based on AST.

A. Technical Validation and System Acceptance

Students, instructors, and administrators engaged in a

black-box testing procedure which ascertained that all

features of the system function as expected. The system met

the operational feasibility minimum requirements. Table II

provides the results of black-box testing.

TABEL II

BLACK-BOX TESTING RESULTS

User Group Features Tested Result

Students Course, Module, FIB, Test,

Results

Valid

Instructors Content Management &

Automated FIB Items

Valid

Administrators Data Management &

Reporting

Valid

The System Usability Scale (SUS) evaluates user

satisfaction with the developed system [21], [22]. Table III

presents the distribution of SUS scores including the range,

number of respondents, and the respective scores. In assessing

subjective usability and system acceptance, the SUS

questionnaire was distributed. Table III summarizes the

distribution of 35 respondent scores, resulting in an average

score of 76.47, which strongly indicates the functional

feasibility of the system.

TABEL III

DISTRIBUTION OF SUS SCORES

SUS

Score

Range

Number of

Respondents

Individual Scores

40–49 1 45

50–59 6 50, 52.5, 55, 55, 57.5, 57.5

60–69 3 65, 65, 67.5

70–79 7 70, 70, 72.5, 75, 75, 77.5, 77.5

80–89 10 80, 80, 82.5, 82.5, 82.5, 85, 85,

85, 87.5, 87.5

90–100 8 90, 90, 90, 92.5, 92.5, 95, 95,

100, 100, 100

In order to illustrate the system's effectiveness in resolving

the false negative issues discussed in the introduction, a

comparison was made with a string matching–based system

that used the same dataset.

Previous analyses suggest substantial difficulty with the

identification of semantic equivalence with string matching

methods, leading to false negative rates of over 20% during

static evaluations[23]. In contrast, the current system

noticeably improved the false negative reduction and

alignment with expert annotations, achieving substantial

agreement as measured by Cohen’s Kappa [24].

FIB and AST evaluator achieved a Cohen’s Kappa of 0.83

compared to a value of 0.61 with string matching, with false

negative rates of 21.5 and 4.5% respectively as shown in

Table IV. The results suggest the integrated AST technology

identifies semantic equivalence which string based

evaluations fail to achieve, leading to greater accuracy and

consistency in evaluations.

B. Pedagogical Effectiveness Analysis

B.1. Between-Group Comparison

An Independent Sample T-Test framework was employed

for evaluations over the three measurement periods of Pre-

Test, Post-Test, and Delay-Test. These results are

summarised in Table IV.
TABLE IV

SUMMARY OF STATISTICAL ANALYSIS WITH SIGNIFICANCE INDICATORS

Group Test Phase Mean

Score

t-value p-

value

Experimental Pre-Test 27.45 −0.046 0.963

Control Pre-Test 27.99

Experimental Post-Test 92.92 4.488 0.000

Control Post-Test 49.68

Experimental Delay-Test 81.84 3.387 0.001

Control Delay-Test 49.52

 e-ISSN: 2548-6861

JAIC Vol. 9, No. 6, December 2025: 2950 – 2956

2954

Experimental Pre → Post 27.45

→

92.92

7.342 0.000

Experimental Post →

Delay

92.92

→

81.84

1.780 0.087

Control Pre → Post 27.99

→

49.68

2.019 0.055

Control Post →

Delay

49.68

→

49.52

0.014 0.989

The Independent Sample T-Test demonstrated statistically

significant improvement for the experimental group (0.000)

and significant retention within the Delay-Test phase (0.001).

The intervention effect size was very large (Cohen’s d = 1.82),

classified as “very large effect” according to Kraft’s criteria.

A Normalized Gain of 0.90 indicates a substantial increase in

conceptual understanding [25]. There was a reduction in the

standard deviation from 39.48 (Pre-Test) to 13.20 (Post-Test)

suggesting increased homogenisation of student

comprehension within the experimental group.

B.2. Multiple Regression and Gain Contextualisation

The multiple regression analysis targeted the predictive

impact of each variable on the Post-Test score improvement.

Among the AST structural score components, the strongest

contribution was noted in the structural scoring AST

component compared to execution output (β = 0.28) and

response time (β = 0.12) with (β = 0.61, p < 0.01). Results of

this analysis substantiate the importance of semantic fairness

most prominently AST scoring in understanding student

improvement.

The large gain (g = 0.90) is to be interpreted with caution

as this reflects two conditions. One includes the control

group’s Post-Test lower baseline performance (49.68)

suggesting issues with assessing initial performance. The

second is that the FIB+AST system functioned as a highly

accurate remedial feedback tool and effectively removed

semantic penalties of false negatives. Literature describes

such sizable gains as typical in intensive remedial

programmes [26].

C. AST Evaluator Validation

C.1. Scoring Weight Trade-Off

For a scoring scheme of 70:30 (AST:Output) and two

alternatives the analysis focused on the trade-off between

false negatives (FNR) and false positives (FP). The 70:30

scheme yielded the lowest FNR, despite a slightly higher FP

rate. A 70:30 ratio was adopted based on axiological

principles of assessment: unfair penalties (false negatives) are

more psychologically and pedagogically damaging than

minor recognition errors (false positives) [27].

C.2. Limitations of Canonicalization and Tree Isomorphism

The AST Evaluator had an F1-Score of 0.966 and thus,

high classification accuracy. Yet, the presence of false

negatives revealed the system’s ontological limitations:

recursive structures, nested lambda functions, and nested

ternary operators were not aligned with canonical structures.

Such limitations stem from the rigidity of tree isomorphism,

which strictly analyzes the framework of interdependencies,

while Abstract Syntax Trees (ASTs) are primarily Directed

Acyclic Graphs (DAGs) [28]. Consequently, tree

isomorphism does not capture the abstract semantic

relationships anchored on control and data flow. According to

Dikici et al. [29], semantic code recognition based on AST

edit distance is ineffective due to structurally different code.

D. Ontological and Epistemological Analysis

D1. Ontological Foundation: Moving from Syntax to

Relational Representation

This study adopts the perspective of Ontic Structural

Realism (OSR) with the understanding that program logic

constitutes a key structural reality. At first the Abstract Syntax

Tree (AST) was treated as an ontological set as a

representation of the syntactic structure. However, in the

evaluation, the reliance on the AST as an adequate

representation was shown to be an overestimation. The

canonicalization failures associated with recursive constructs

indicate that the tree isomorphism thesis fails to adequately

capture the essential structural reality of program logic.

To address these issues, this study proposes an ontological

shift towards graph-based models, particularly Control Flow

Graphs (CFG) and Data Flow Graphs (DFG). This shift

recognises that relational ontologies consisting of control

flow and data dependencies are a more accurate reflection of

program logic than surface syntax. The CFGs and DFGs not

only embody vital semantic relations but also aid in

pinpointing semantic equivalence despite varied coding

approaches. The structural integrity that graph models

provide also enhances the objectivity of system assessments,

offering a potential for valid classification that bypasses

syntactic alterations.

D.2. Epistemology: Post-Positivism and Uncertainty

The evaluation system is grounded in a post-positivist

epistemology, one that treats inference to the truth as non-

absolute and probabilistic. The existencesss of a false positive

(FP) finding in automated semantic validation demonstrates

the intrinsic limitations of observation. Multiple outputs that

are similar may not logically mean the same thing. This

speaks to the uncertainty inherent in automated semantic

validation. The empirical data was validated systemically

through cross-triangulation :

a. Inferential Validity: Evaluated through internal

consistency measures (F1-Score, Recall) of the AST and

the system's accuracy in replicating correct structural

decisions.

JAIC e-ISSN: 2548-6861

Abstract Syntax Tree Model for Minimizing False Negative in Semantic Evaluation of Python Fill-in-the-Blank

(Usman Nurhasan, Didik Dwi Prasetya, Syaad Patmanthara)

2955

b. Pedagogical Validity: Evaluated through external

reliability (expert annotations, κ), practical impact

(Normalised Gain, g), and the return on investment

measures (ROI).

TABLE V

VALIDATION OF PEDAGOGICAL FEASIBILITY

Analytical

Aspect

Key

Findings

Quantitative

Validation

Philosophical

Validation

Technical

Validity &

Usability

FIB+AST

system is

functional

and

exhibits

high

usability.

SUS = 76.47;

FNR = 4.5%

AST serves as

a partial

structural

representation

prior to

expansion.

Pedagogical

Effectiveness

Significant

learning

gains

supported

by fairness

validation.

Cohen’s d =

1.82;

g = 0.90;

β_AST = 0.61

Semantic

accuracy

ensures

evaluative

fairness;

promotes

transfer

learning.

AST

Evaluator

Performance

High

inferential

accuracy

and strong

expert

reliability.

F1-Score =

0.966;

κ = 0.83

Inference is

probabilistic;

demands

epistemic

transparency

via confidence

score.

A Confidence Score, which is based on Tree Edit Distance,

is produced and used to calibrate inferences. This score

increases transparency and aids decision-making, offering a

form of control to the user in cases of extreme uncertainty and

manual validation. Thus, the system is a calibrated, inferential

instrument of revision and not an absolute one.

The following Table V captures key findings, based on the

post-positivist epistemological paradigm, which

demonstrates the technical feasibility and pedagogical impact

of the AST-Graph based evaluation system while outlining its

pedagogical impact within the probabilistic framework of the

system.

IV. CONCLUSION

A. Summary

This study provides two main contributions. First,

technically, the AST-based model significantly lowers the

false negative rate from 21.5% (observed in string matching)

to 4.5%. This indicates that AST can be considered an

effective semantic filter for the detection of logical

equivalence in student answers. Second, pedagogically,

semantic accuracy stands out as the foremost factor in driving

improvements in significant learning. The size of the impact

(Cohen’s d = 1.82) and the multiple regression analysis

determine that pure AST scores most strongly predict

increased comprehension.

The AST-based semantic evaluation model demonstrates

high construct validity and construct reliability. It surpasses

the traditional syntactic methods with its validated results and

excellent classification results (F1 = 0.966; κ = 0.83). A

validated triangulation framework provides a solid epistemic

base. The inferences a system generates can be treated as

probabilistic ground truth, permitting teachers to spend less

time manual grading and more time on the analysis of

ambiguous cases.

AST is, ontologically, a valid semantic representation.

However, the limitations of tree isomorphism in recognizing

recursive structures and nested lambda functions reveal the

need to attentively improve nested tree structures for AST to

achieve its full potential as a more powerful semantic analysis

model. In its axiological dimension, the system reveals

functional feasibility and solid user acceptance, illustrated by

a System Usability Scale (SUS) score of 76.47, which refers

to extended usability. Usability and user trust are furthered by

features such as AST visualization and confidence scoring.

Moreover, the AST model has a quantifiable pedagogical

effect. A normalized gain of 0.90 with a low standard

deviation suggests some degree of conceptual

homogenization. Consistent retention outcomes suggest that

semantic fairness—not feedback speed—primarily aids in the

transfer of learning.

B. Recommendations
Future research should expand the scope of semantic

evaluation. It would be beneficial to use graph isomorphism

techniques based on Control Flow Graphs (CFG) and Data

Flow Graphs (DFG) to improve upon the limitations of tree

isomorphism. More complex problems could include

detecting semantic errors, performing dynamic code analysis,

and structural assessments across various programming

languages. Generalization of the AST would also need to be

assessed on other languages, such as Java or C++. Future

research could also explore the use of Large Language

Models (LLMs) to enable flexible and situational semantic

evaluations. Longitudinal studies are recommended to assess

long-term retention of learning outcomes. Implementing

additional Delay-Tests at intervals of one and three months

would help measure the durability of learning effects.

Additionally, it would be valuable to correlate student activity

logs with score homogenization to identify effective

interaction patterns. In line with open science principles, it is

strongly encouraged to publish anonymized datasets and the

source code for the AST Evaluator in open repositories. This

practice promotes external validation and ensures the

reproducibility of results.

REFERENCES
[1] A. Agarwal, “Python for CS1, CS2 and beyond,” J. Comput. Small

Coll., vol. 20, pp. 262–270, Jan. 2005.

[2] M. Messer, N. C. C. Brown, M. Kölling, and M. Shi, “Automated
Grading and Feedback Tools for Programming Education: A

Systematic Review,” ACM Trans. Comput. Educ., vol. 24, no. 1,

 e-ISSN: 2548-6861

JAIC Vol. 9, No. 6, December 2025: 2950 – 2956

2956

Feb. 2024, doi: 10.1145/3636515.

[3] Z. Fan, S. H. Tan, and A. Roychoudhury, “Concept-Based
Automated Grading of CS-1 Programming Assignments,” ISSTA

2023 - Proc. 32nd ACM SIGSOFT Int. Symp. Softw. Test. Anal., pp.

199–210, 2023, doi: 10.1145/3597926.3598049.
[4] B. Cheang, A. Kurnia, A. Lim, and W.-C. Oon, “On automated

grading of programming assignments in an academic institution,”

Comput. Educ., vol. 41, pp. 121–131, Sep. 2003, doi:
10.1016/S0360-1315(03)00030-7.

[5] M. Erfan, I. Handika, Afriyanti, W. Aziiz Hari Mukti, and T. Ratu,

“Penggunaan Bahasa Pemrograman Python dalam Analisis
Hubungan Peminat dan Daya Tampung Seluruh Prodi di Indonesia

Pada PTN Akademik, Vokasi dan PTKIN Tahun 2023,” J. Classr.

Action Res., vol. 6, no. 2, pp. 313–9, 2024, [Online]. Available:
http://jppipa.unram.ac.id/index.php/jcar/index

[6] A. Kholik, H. Bisri, Z. K. Lathifah, B. Kartakusumah, M. Maufur,

and T. Prasetyo, “Impelementasi Kurikulum Merdeka Belajar
Kampus Merdeka (MBKM) Berdasarkan Persepsi Dosen dan

Mahasiswa,” J. Basicedu, vol. 6, no. 1, pp. 738–748, 2022, doi:

10.31004/basicedu.v6i1.2045.
[7] Z. Swilam, A. Hamdy, and A. Pester, “Improving code semantics

learning using enhanced Abstract Syntax Tree,” Int. J. Comput.

Appl., vol. 47, no. 1, pp. 57–69, Jan. 2025, doi:
10.1080/1206212X.2024.2443506.

[8] Z. Zhu, N. Funabiki, M. Mentari, S. T. Aung, W. C. Kao, and Y. F.

Lee, “An Automatic Code Generation Tool Using Generative
Artificial Intelligence for Element Fill-in-the-Blank Problems in a

Java Programming Learning Assistant System,” Electron., vol. 14,

no. 11, pp. 1–27, 2025, doi: 10.3390/electronics14112261.
[9] A.-T. P. Nguyen and V.-D. Hoang, “Development of Code

Evaluation System based on Abstract Syntax Tree,” J. Tech. Educ.

Sci., vol. 19, no. 1, pp. 15–24, 2024, doi: 10.54644/jte.2024.1514.
[10] D. R. Fudholi and A. Capiluppi, “Artificial intelligence for source

code understanding tasks: A systematic mapping study,” Inf. Softw.

Technol., vol. 189, p. 107915, 2026, doi:
https://doi.org/10.1016/j.infsof.2025.107915.

[11] Geetika, N. Kaur, and A. Kaur, “A Semantic-driven approach to

detect Type-4 code clones by using AST and PDG,” Int. J. Inf.
Technol., Jul. 2025, doi: 10.1007/s41870-025-02670-2.

[12] M. Hammad, Ö. Babur, H. Basit, and M. Brand, “Clone-Seeker:

Effective Code Clone Search Using Annotations,” IEEE Access,
vol. 10, p. 1, Jan. 2022, doi: 10.1109/ACCESS.2022.3145686.

[13] P. R., T. Mg, and J. Kannimoola, “Automated Code Assessment

and Feedback: A Comprehensive Model for Improved
Programming Education,” IEEE Access, vol. PP, p. 1, Jan. 2025,

doi: 10.1109/ACCESS.2025.3554838.

[14] S. Parihar, Z. Dadachanji, P. K. Singh, R. Das, A. Karkare, and A.
Bhattacharya, “Automatic Grading and Feedback using Program

Repair for Introductory Programming Courses,” in Proceedings of
the 2017 ACM Conference on Innovation and Technology in

Computer Science Education, in ITiCSE ’17. New York, NY,

USA: Association for Computing Machinery, 2017, pp. 92–97. doi:
10.1145/3059009.3059026.

[15] G. Jiang, “Design and Implementation of an Automatic Grading

System for Programming Code Based on Artificial Intelligence,”
in 2025 IEEE 3rd International Conference on Image Processing

and Computer Applications (ICIPCA), 2025, pp. 1846–1851. doi:

10.1109/ICIPCA65645.2025.11139057.
[16] E. Telli and A. Altun, “Effect of semantic encoding strategy

instruction on transfer of learning in e-learning environments,” J.

Educ. Technol. Online Learn., vol. 6, Jan. 2023, doi:
10.31681/jetol.1205276.

[17] A. Sheoran et al., “Data reporting quality and semantic

interoperability increase with community-based data elements

(CoDEs). Analysis of the open data commons for spinal cord injury
(ODC-SCI),” Exp. Neurol., vol. 385, p. 115100, 2025, doi:

https://doi.org/10.1016/j.expneurol.2024.115100.

[18] C. Xu, M. B. Mashhadi, Y. Ma, R. Tafazolli, and J. Wang,
“Generative Semantic Communications With Foundation Models:

Perception-Error Analysis and Semantic-Aware Power

Allocation,” IEEE J. Sel. Areas Commun., vol. 43, no. 7, pp. 2493–
2505, 2025, doi: 10.1109/JSAC.2025.3559120.

[19] Jessica J Santana and Seonghoon Kim, “From Values to Codes:

A computational text analysis of the codification of occupational
ethics,” Organ. Stud., p. 01708406251317255, Feb. 2025, doi:

10.1177/01708406251317255.

[20] A. Brockinton, M. Salnitri, F. Kooner-Evans, J. McAlaney, and S.
Thompson, “An exploratory study on the human component using

a cultural model to define open research topics for secure socio-

technical systems,” Technol. Soc., vol. 83, p. 103000, 2025, doi:
https://doi.org/10.1016/j.techsoc.2025.103000.

[21] Macclarck Pessoa Nery, Severiano José dos Santos

Neto, Roberty Santos Alves, João Vitor dos Santos
Santana, Sandro Griza, and Carlos Otávio Damas Martins,

“Development of educational software for stainless steel selection

and evaluating usability using the System Usability Scale (SUS),”
Int. J. Mech. Eng. Educ., vol. 53, no. 4, pp. 957–972, Aug. 2024,

doi: 10.1177/03064190241266978.

[22] S. F. Brähmer et al., “Development of a Serious Game App
(Digimenz) for Patients With Dementia: Prospective Pilot Study

for Usability Testing in Inpatient Treatment and Long-Term Care,”

JMIR Serious Games, vol. 13, p. e69812, 2025, doi:
10.2196/69812.

[23] X. Xu et al., MGF-ESE: An Enhanced Semantic Extractor with

Multi-Granularity Feature Fusion for Code Summarization, vol. 1,
no. 1. Association for Computing Machinery, 2025. doi:

10.1145/3696410.3714544.

[24] L. Deng, X. Ren, C. Ni, M. Liang, D. Lo, and Z. Liu, “Enhancing
Project-Specific Code Completion by Inferring Internal API

Information,” IEEE Trans. Softw. Eng., vol. 51, no. 9, pp. 2566–

2582, 2025, doi: 10.1109/TSE.2025.3592823.
[25] D. Chicco, A. Sichenze, and G. Jurman, A simple guide to the use

of Student’s t-test, Mann-Whitney U test, Chi-squared test, and

Kruskal-Wallis test in biostatistics, vol. 18, no. 1. BioMed Central,
2025. doi: 10.1186/s13040-025-00465-6.

[26] Chengliang Wang, Xiaojiao Chen, Yifei Li, Pengju

Wang, Haoming Wang, and Yuanyuan Li, “MetaClassroom: A
New Paradigm and Experience for Programming Education,” J.

Educ. Comput. Res., vol. 63, no. 4, pp. 864–901, Feb. 2025, doi:

10.1177/07356331251322470.
[27] H. Cui, M. Xie, T. Su, C. Zhang, and S. H. Tan, “An Empirical

Study of False Negatives and Positives of Static Code Analyzers
From the Perspective of Historical Issues,” vol. 1, no. 1, pp. 1–26,

2024, [Online]. Available: http://arxiv.org/abs/2408.13855

[28] Z. Chen, S. Villar, L. Chen, and J. Bruna, “On the equivalence
between graph isomorphism testing and function approximation

with GNNs,” in Proceedings of the 33rd International Conference

on Neural Information Processing Systems, Red Hook, NY, USA:
Curran Associates Inc., 2019.

[29] S. Dikici and T. T. Bilgin, “Advancements in automated program

repair: a comprehensive review,” Knowl. Inf. Syst., vol. 67, no. 6,
pp. 4737–4783, 2025, doi: 10.1007/s10115-025-02383-9.

