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 Liver cirrhosis is a progressive chronic disease whose early detection poses a clinical 

challenge, making accurate severity staging crucial for patient management. This 

research proposes and evaluates a TabNet deep learning model, specifically designed 

for tabular data, to address this challenge. In the initial evaluation, a baseline TabNet 

model with its default configuration achieved a baseline accuracy of 65.11% on a 

public clinical dataset. To enhance performance, hyperparameter optimization using 

Optuna was implemented, which successfully increased the accuracy significantly to 

70.37%, with precision, recall, and F1-score metrics each reaching 70%. The model's 

discriminative ability was also validated as reliable in multiclass classification 

through AUC metric evaluation. In addition to accuracy improvements, the model's 

interpretability was validated through the identification of key predictive features 

such as Prothrombin and Hepatomegaly, which align with clinical indicators. This 

study demonstrates that Optuna-optimized TabNet is an effective and interpretable 

approach, possessing significant potential for integration into clinical decision 

support systems to support a more precise diagnosis of liver cirrhosis.  
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I. INDRODUCTION 

Liver cirrhosis is a chronic medical condition characterized 

by progressive, long-term damage to liver tissue, wherein 

healthy tissue is gradually replaced by excessive fibrosis. This 

process disrupts the liver's normal structure and function, 

potentially leading to liver failure and hepatocellular 

carcinoma [1]. As a leading cause of mortality globally, 

particularly in developing nations, its prevalence is driven by 

risk factors such as chronic alcohol consumption, viral 

hepatitis, and Non-Alcoholic Fatty Liver Disease (NAFLD) 

[2]. The significance of liver cirrhosis is amplified by its 

often-asymptomatic nature in the early stages, with detection 

frequently occurring only at an advanced stage. This delay 

complicates medical intervention, reduces treatment efficacy, 

and imposes a substantial burden on healthcare systems [3]. 

According to the World Health Organization (WHO), liver 

cirrhosis affects approximately 3% of the global population, 

with an estimated 3 to 4 million new cases diagnosed 

annually. The etiology of the disease exhibits significant 

regional variation; in Indonesia, hepatitis B and C are the 

predominant causes, whereas in Western countries, chronic 

alcohol consumption is the primary driver [4]. This global 

health issue underscores the critical need for advanced and 

precise scientific approaches for early detection and 

prevention to mitigate mortality. 

Challenges in managing liver cirrhosis are exacerbated by 

delayed diagnosis, often stemming from a lack of regular 

public health screenings [5]. Suboptimal management of the 

disease leads to high mortality rates and places a significant 

strain on healthcare resources. While early detection is 

crucial, it remains difficult without accurate predictive tools 

[6]. Neglected cases of cirrhosis can progress to fatal liver 

cancer, with elderly individuals and patients with chronic 

hepatitis being the most vulnerable populations [7].  

Previous studies have attempted to use machine learning 

approaches to predict the risk of liver cirrhosis. For example, 

a study by Yasmin Roni Mz (2024) used the CART method 

to generate a Decision Tree algorithm on a liver cirrhosis 
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prediction dataset, resulting in an accuracy of less than 70% 

in identifying patients with potential cirrhosis [8]. A 

subsequent study by Vania Riskasari YR (2023) used the 

support vector machine (SVM) algorithm and demonstrated 

good performance with an accuracy of 67.68% [9]. 

Meanwhile, the latest study conducted by Mardewi (2024) 

using the Ensemble Bagged Tree model achieved the highest 

accuracy of 71%, followed by Ensemble Boosted Tree 

(67.2%) and Ensemble RUSBoosted Tree (66%) for 

classifying patients with various stages of liver cirrhosis [10]. 

Although various approaches have been used for the 

prediction and classification of liver cirrhosis, there are still a 

number of research gaps that need to be addressed. First, 

research by Yasmin Roni Mz (2024) using the CART method 

resulted in low accuracy (<70%) due to data imbalance and 

dependence on data structure, without cross-validation or 

comparison with other models. Second, Vania Riskasari YR 

(2023) used SVM with an accuracy of 67.86%, but did not 

optimally handle minority classes and only relied on the RBF 

kernel without exploring data balancing techniques. Third, 

Mardewi and Supriyadi La Wungo (2024) compared several 

ensemble models, but their evaluation was still limited to 

accuracy, without considering metrics such as F1-score or 

AUC, and did not apply an Explainable AI (XAI) approach. 

Additionally, there has been no research on long term 

cirrhosis progression prediction or survival analysis. In 

medical research for classification, machine learning methods 

have been widely used as a general approach to create 

accurate classifications and predictions, but their performance 

depends on the dataset used [11]. On the other hand, although 

most studies have used real clinical data, none have 

specifically explored the potential of the TabNet deep 

learning model designed for tabular data, which offers 

advantages in feature selection and interpretability. 

Therefore, further research is needed to explore more adaptive 

models and the use of architectures such as TabNet to improve 

the accuracy and applicability of liver cirrhosis predictions. 

In response to this architectural gap, TabNet has emerged 

as a state of the art model specifically engineered for tabular 

data. It uniquely integrates concepts from decision trees into 

a deep learning framework, employing a sequential attention 

mechanism to perform instance-wise feature selection. This 

design not only enables TabNet to capture complex patterns 

but also provides a degree of interpretability, a crucial feature 

for clinical applications. Given these advantages, TabNet 

presents a compelling candidate for addressing the challenges 

of liver cirrhosis classification. This research aims to fully 

leverage this potential by implementing a deep learning based 

framework for liver cirrhosis prediction, utilizing the TabNet 

model with hyperparameter optimization. TabNet is 

specifically engineered for tabular data, demonstrating robust 

capabilities in capturing complex patterns and relationships 

within structured clinical patient data [12]. TabNet's inherent 

ability to perform automatic feature selection can reduce 

manual workload and increase implementation efficiency 

[13]. However, even a powerful architecture like TabNet is 

not guaranteed to perform optimally out of the box, as its 

performance is highly sensitive to the choice of 

hyperparameters. To systematically navigate this complex 

parameter space and unlock TabNet's full predictive potential, 

this research employs Optuna, a state of the art Bayesian 

optimization framework. The integration of Optuna is critical 

for achieving optimal model accuracy and resilience through 

dynamic parameter searching [14]. 

The primary objective of this research is to develop and 

systematically evaluate an Optuna optimized TabNet model 

for the multiclass classification of liver cirrhosis severity from 

clinical tabular data. The novelty of this research lies in its 

specific application and rigorous optimization of the TabNet 

architecture, a model engineered for tabular data, for this 

critical clinical challenge, an area that remains underexplored 

in the existing literature. By doing so, this study contributes a 

robust, high performing, and interpretable framework that not 

only outperforms a baseline model but also provides a 

validated pathway for enhancing diagnostic precision in liver 

cirrhosis management. 

 

II. METHOD  

This research aims to classify the severity of liver cirrhosis 

in target stages that indicate the disease has reached stage one, 

two, or three by developing and evaluating the TabNet model, 

which is part of a deep learning classification model [15]. The 

research methodology, as illustrated in figure 1, encompasses 

a multi-stage workflow. This process begins with dataset 

preparation and preprocessing, followed by data splitting. 

Subsequently, the TabNet model is trained and then refined 

through hyperparameter optimization using Optuna, with a 

final evaluation conducted on both the training and testing 

sets.  

 
Figure 1. Research flow 
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A. Dataset Preparation  

This research used a dataset from Kaggle 

(https://www.kaggle.com/datasets/aadarshvelu/liver-

cirrhosis-stage-classification) that contains medical 

information about patients with liver cirrhosis. It consists of 

25,000 rows of data with 19 features, and 3 class labels of 

stage (1,2,3) including numeric data (N_Days, Age, Bilirubin, 

Cholesterol, Albumin, Copper, Alk_Phos, SGOT, 

Triglycerides, Platelets, Prothrombin, and Stage) and non-

numeric data (Status, Drug, Sex, Ascites, Hepatomegaly, 

Spiders, and Edema). 

 

 
Figure 2 . Dataset distribution  

 

The distribution of classes within the dataset is balanced, 

as illustrated in figure 2, which provides a solid foundation 

for building classification models without significant class 

imbalance bias. However, despite the relatively large initial 

size, the effective dataset became limited after preprocessing 

steps, particularly the removal of 15,361 duplicate entries, 

leaving only 9,639 unique data points available for model 

training and evaluation. This considerable reduction in dataset 

size imposes limitations on the model’s capacity to generalize 

and fully capture the clinical heterogeneity present in liver 

cirrhosis patients. Although class balance is maintained 

within the reduced data, the smaller volume increases the 

vulnerability to overfitting and may reduce the robustness of 

the model when applied to unseen clinical data. 

Consequently, this highlights the necessity for future research 

to incorporate larger, more diverse, and representative clinical 

datasets to enhance model reliability and applicability in real-

world medical settings.  

B. Data Preprocessing 

Preprocessing data is a crucial initial stage in building a 

deep learning model because good data quality greatly affects 

the model's performance. In this research, the preprocessing 

stage consisted of two steps: 

1)   Remove Duplicate: This step aims to remove 

duplicate data rows in the dataset. This dataset has 15,361 

duplicate data points. The remaining data used is 9,639 data 

points. 

2)   Label Encoding: Label encoding is a technique for 

converting categorical features in the form of text into 

numerical values [16]. Features that will be encoded include 

non-numeric features consisting of Status, Drug, Sex, Ascites, 

Hepatomegaly, Spiders, and Edema. 

C. Split Data  

The preprocessed dataset was partitioned into a 70% 

training set and a 30% testing set using a stratified split to 

maintain the original class distribution in both subsets. This 

approach ensures an unbiased evaluation of the model's 

ability to generalize to unseen data [17].  

Adhering to a 70/30 split ratio, the dataset was divided into 

two distinct subsets: a training set and a testing set. The 

training set, comprising 6,747 instances, was utilized 

exclusively for the model development and learning phase. 

The remaining 2,892 instances constituted the testing set, 

which was held out to provide an unbiased assessment of the 

final model's performance. 

D. TabNet Model 

TabNet is a deep learning framework designed for tabular 

data, integrating representation learning with interpretability. 

Through sequential attention and sparse feature selection, it 

adaptively identifies the most informative features at each 

decision step, enhancing both predictive accuracy and 

efficiency [18].  

The main advantage of TabNet is its ability to maintain 

transparency in the decision-making process through feature 

attribution visualization mechanisms [19]. Additionally, 

TabNet is suitable for application in the medical domain, as it 

addresses the interpretability limitations of conventional deep 

learning and provides accurate predictive results on 

heterogeneous data such as patient data [16].  

As shown in figure 3, at each step of the decision making 

process, TabNet employs a specific formula to determine the 

most significant features, as outlined figure 3. 

 

 
Figure 3. TabNet architecture framework 

 

First, the data passes through a batch normalization layer 

before being processed by the feature transformer. Extracting  

https://www.kaggle.com/datasets/aadarshvelu/liver-cirrhosis-stage-classification
https://www.kaggle.com/datasets/aadarshvelu/liver-cirrhosis-stage-classification
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features from the normalized input is the responsibility of the  

feature transformer module. Each feature transformer is 

divided into two parts: the first part uses shared parameters, 

while the second part has independent parameters and is 

trained specifically for each step [15]. This architecture 

consists of two parts, each of which has a fully connected 

layer followed by batch normalization (BN) and gated linear 

units (GLU). The output from each part is normalized again 

to maintain variance stability and facilitate learning within the 

TabNet architecture. The TabNet architecture is composed of 

three main components. The Feature Transformer processes 

features into initial latent representations, which are then 

passed to the Attentive Transformer. The Attentive 

Transformer identifies the most relevant features to focus on 

in the subsequent decision step. Equation (1) is the formula 

for the TabNet mechanism. 

 

𝑀[𝑖] = 𝑠𝑝𝑎𝑟𝑠𝑒𝑚𝑎𝑥(𝑃[𝑖 − 1] ∙ ℎ𝑖(𝑎[𝑖 − 1]))       (1) 

 

𝑎[𝑖 − 1] is the characteristic information shared by the split in 

the final decision, ℎ𝑖 describes the BN and FC layers, 𝑃[𝑖 − 1] 

is the feature usage priority scale, and sparsemex can produce 

less frequent output results [20]. Thus, TabNet can provide 

good performance by performing sparse feature selection to 

support model interpretability [21]. In the context of liver 

cirrhosis classification, the application of TabNet is relevant 

because patient clinical data is generally multidimensional 

tabular data with complex inter-feature relationships, and 

requires a system that is not only accurate but also clinically 

accountable. 

E. Hyperparameter Optimization 

The optimization of a model's hyperparameters is essential 

[22], as these factors critically determine its learning ability 

and generalization performance. In this research, Optuna 

Model was utilized for optimalization parameter. Built around 

the "define-by-run" principle, Optuna supports a dynamic and 

flexible approach to parameter exploration. The framework 

incorporates efficient search mechanisms and pruning 

strategies, along with a highly adaptable architecture suitable 

for diverse optimization tasks.  

The methodological approach consisted of three stages. 

Initially, the hyperparameters and their specific search spaces 

were meticulously defined for each model. Subsequently, an 

objective function was formulated to maximize model 

performance, and the total number of optimization trials 

(n_trials) was specified. The final stage involved a thorough 

evaluation of the optimization outcomes to identify the 

optimal hyperparameter configurations.  

F. Evaluation Model 

This research used several key classification metrics to 

evaluate the data: accuracy, precision, recall, F1-score, and 

area under the curve (AUC-ROC). Equation (2) is the 

accuracy formula for the model performance evaluation 

metric. 

 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃+ 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
       (2) 

 

Precision measures how accurate the model is when 

predicting positive cases, whereas recall shows how well the 

model identifies all actual positive instances. The formulas for 

calculating both precision and recall are provided in Equation 

(3) as part of the performance evaluation metrics. 

 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
 , 𝑟𝑒𝑐𝑎𝑙𝑙 =  

𝑇𝑃

𝑇𝑃+𝐹𝑁
        (3) 

 

The F1-score is the harmonic mean of precision and recall, 

which provides a more balanced assessment of the two 

metrics. Equation (4) is the F1-Score formula for model 

performance evaluation metrics.  

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 × 
𝑃𝑟𝑒𝑐𝑒𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
        (4) 

The ROC curve is a graphical tool that illustrates the 

relationship between sensitivity (TPR) and false positive rate 

(FPR) under different classification thresholds [26]. 

Sensitivity indicates the proportion of positives correctly 

detected, while FPR shows negatives incorrectly classified as 

positives. This value can be calculated using the equation 

shown in Formula (5). 

 

𝑇𝑃𝑅 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 , 𝐹𝑃𝑅 =  

𝐹𝑃

𝐹𝑃 + 𝑇𝑁
          (5) 

 

III. RESULT AND DISCUSSION 

This section details the implementation and evaluation of 

an Optuna-optimized TabNet model for classifying liver 

cirrhosis severity. 

A. Result of TabNet Baseline Model  

The initial phase of the study focused on establishing a 

baseline performance for the TabNet model. While the core 

TabNet architecture was utilized with its default settings, the 

training process was governed by a specific set of parameters, 

as detailed in table I. The model was trained for a maximum 

of 50 epochs, with an early stopping patience of 10 epochs 

implemented to prevent overfitting. A batch size of 256 and a 

virtual batch size of 128 were used to balance computational 

efficiency and gradient stability. This configuration was 

intentionally chosen to provide a standardized, out-of-the-box 

performance benchmark before proceeding with 

hyperparameter optimization.  

TABLE I 

PARAMETERS SETTINGS 

TabNet Model Parameters 

max_epochs 50  

patience 10 

batch_size 256 

virtual_batch_size  128 
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The performance of the baseline TabNet model is detailed 

in table II. Table II presents the classification performance of 

the baseline TabNet model on the testing set. The model 

achieved an overall accuracy of 65.11%. The macro and 

weighted averages for precision, recall, and F1-score were 

highly consistent at approximately 0.65-0.66, indicating that 

the model's performance was relatively balanced across the 

three classes, as expected given the similar support values for 

each class. A closer examination of the per-class metrics 

reveals varying performance: the model was most effective at 

classifying Class 2 (F1-score: 0.72) but struggled 

significantly with Class 1, which had a notably low precision 

of 0.57. Despite the moderate accuracy, the Area Under the 

Curve (AUC) of 0.8263 suggests the model possesses good 

discriminative power. Overall, these results establish a 

reasonable but clearly improvable performance baseline, with 

specific weaknesses to be addressed through hyperparameter 

optimization. 

TABLE II 

CLASSIFICATION PERFORMANCE OF THE BASELINE MODEL 

 Precision Recall F1-score Support 

0 0.65 0.62 0.63 908 

1 0.57 0.65 0.61 992 

2 0.75 0.69 0.72 992 

macro 

avg 

0.66 0.65 0.65 2892 

weighted 

avg 

0.66 0.65 0.65 2892 

AUC 0.8263 

Accuracy 0.6511 

 

The confusion matrix for the baseline model, shown in 

figure 4, illustrates its performance in the multiclass 

classification task. The main diagonal highlights a substantial 

number of correct predictions, with the model accurately 

classifying 559, 640, and 684 samples for Class 0, 1, and 2, 

respectively. However, the off-diagonal values reveal a 

significant systematic bias. The model demonstrates a clear 

propensity to misclassify samples into Class 1 (moderate 

stage), incorrectly assigning 270 samples from Class 0 and 

211 samples from Class 2 to this category. This pattern 

suggests that the feature distributions of Class 1 may overlap 

significantly with those of the adjacent classes, making it a 

common point of confusion for the baseline model. While the 

number of correct classifications confirms the model's 

fundamental effectiveness, this pronounced bias highlights a 

critical area for improvement through hyperparameter 

optimization. 

 

 
Figure 4. Confusion matrix of the baseline model 

 

The model's per-class discriminative performance was 

evaluated using One-vs-Rest (OvR) ROC curves, as shown in 

figure 5. The model demonstrates strong performance in 

distinguishing Class 2 (severe) from the others, achieving the 

highest AUC of 0.87, and also performs well on Class 0 (mild) 

with an AUC of 0.84. However, the model's ability to 

discriminate Class 1 (moderate) is notably weaker, with an 

AUC of 0.77. This lower score for the intermediate class 

aligns with the findings from the confusion matrix (Figure 4), 

which revealed a significant tendency for the model to 

misclassify samples from both Class 0 and Class 2 into this 

category. Nevertheless, as all curves lie well above the 

diagonal line of random chance, the results confirm that the 

baseline model possesses significant predictive power overall. 

 

 
Figure 5. ROC curve of the baseline model 
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Figure 6. Important features in the Tabnet baseline model 

 

The feature importance analysis for the baseline TabNet 

model, illustrated in figure 6, identifies a clear hierarchy of 

predictive features. The analysis reveals a clear hierarchy of 

feature influence, which can be categorized into three distinct 

tiers. The top tier of predictors, with importance scores 

approaching 0.20, is dominated by clinically critical markers 

of liver function and decompensation: 'Prothrombin', 

'Albumin', and 'Edema'. The high ranking of these features 

aligns with established medical knowledge, as they directly 

reflect the liver's synthetic capacity and the presence of fluid 

retention, key indicators of cirrhosis severity. An intermediate 

tier of features, including 'Hepatomegaly', 'Age', 'Platelets', 

and 'Cholesterol', also demonstrates significant predictive 

value. These features represent a mix of physical examination 

findings, demographic data, and secondary laboratory 

markers that provide important contextual information for 

staging. Finally, a large number of features, such as 'SGOT', 

'Bilirubin', and 'Sex', exhibited minimal to negligible 

importance, indicating that the TabNet model's attention 

mechanism effectively learned to de-prioritize less relevant or 

redundant information. This instance-wise feature selection is 

a key strength of the TabNet architecture. 

B. Model Optimization Results with Optuna 

While the baseline TabNet model demonstrated a 

foundational predictive capability, its initial performance was 

deemed unsatisfactory, highlighting the need for systematic 

optimization. Therefore, to enhance the model's accuracy, 

stability, and generalization, hyperparameter optimization 

was conducted using the Optuna framework. This subsequent 

phase aimed to identify the optimal set of parameters to 

unlock the full potential of the TabNet architecture on this 

specific dataset. 

TABLE IV 

OPTUNA PARAMETERS SETTINGS 

Parameters Range 

n_d 138 

n_a 146 

n_steps 4 

gamma 1.169 

lambda_sparse 6.126e-06 

momentum 0.104 

clip_value 2.346 

learning rate 0.037 

weight_decay 5.337e-06 

batch_size 128 

 

Following the hyperparameter optimization process with 

Optuna, the optimal configuration for the TabNet model was 

identified, as detailed in table IV. The optimal architecture 

was defined by an attention dimension (n_a) of 146 and a 

feature dimension (n_d) of 138, with 4 decision steps 

(n_steps). Key training parameters were fine-tuned to balance 

learning and regularization: the learning rate was set to 0.037, 

with a momentum of 0.104 and a gamma of 1.169. To prevent 

overfitting, regularization parameters were optimized to 

lambda_sparse = 6.126e-06 and weight_decay = 5.337e-06, 

while a clip_value of 2.346 ensured gradient stability. Finally, 

a batch size of 128 was found to be optimal. This specific 

combination of parameters, discovered through Optuna's 

efficient exploration, represents the configuration that yielded 

the highest model performance. 

The accuracy evaluation of the optimized model is 

presented in figure 7. The graph shows a rapid and parallel 

increase in both accuracies during the initial epochs, 

indicating efficient learning from the data. As training 

progresses, the curves begin to plateau, with the training 

accuracy converging to approximately 0.74-0.75 and the 

validation accuracy stabilizing around 0.69-0.70. The close 

proximity and parallel trajectory of the two curves are 

particularly noteworthy, as they demonstrate strong 

generalization and confirm that the model is not overfitting to 

the training data. This stability in the later epochs indicates 

that the model has reached convergence, and that the 

optimized parameters have successfully guided the learning 

process to a robust solution. 

 

 
Figure 7. Optuna-optimized TabNet model accuracy 
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Figure 8. Confusion matrix of the optuna-optimized TabNet model 

 

The confusion matrix for the optimized model, depicted in 

figure 8, demonstrates a significant enhancement in 

classification accuracy and reliability. The main diagonal 

shows a marked increase in true positives, with the model now 

correctly classifying 637, 628, and 770 samples for Class 0, 

1, and 2, respectively. A key improvement is the significant 

reduction in the systematic bias towards Class 1; for instance, 

the misclassification of Class 0 as Class 1 dropped from 270 

to 186 instances. While some confusion between adjacent 

classes persists, the overall number of misclassifications has 

decreased considerably. This enhanced performance, 

characterized by a significant reduction in false positives and 

false negatives, confirms that the optimized model is not only 

more accurate but also more balanced and reliable, making it 

a stronger candidate for providing trustworthy decision 

support in clinical settings. 

 

 
Figure 9. Optuna-optimized TabNet model hyperparameter  

 

The hyperparameter optimization process, facilitated by 

the Optuna framework, is illustrated in figure 9. The graph 

clearly demonstrates the effectiveness of the Tree-structured 

Parzen Estimator (TPE) algorithm, which intelligently guides 

the search toward more promising regions of the parameter 

space. This is evidenced by the upward trend in the best-

achieved score (the red line), which converges as the number 

of trials increases. The concentration of high-scoring trials in 

later stages indicates that Optuna successfully learned from 

previous results to focus on high-performance configurations. 

Furthermore, this guided search, combined with Optuna's 

ability to prune unpromising trials early, resulted in a more 

computationally efficient optimization process compared to 

traditional methods like grid or random search, ultimately 

leading to a superior final model. 

The feature importance analysis of the optimized TabNet 

model, illustrated in figure 10, identifies a distinct hierarchy 

of predictive features. The analysis reveals a clear hierarchy 

of feature influence, with 'Prothrombin' emerging as the 

single most dominant predictor, having an importance value 

approaching 0.20. Following this, a primary tier of highly 

significant features includes 'Hepatomegaly' and 'Albumin', 

both of which are established clinical indicators of liver 

function and disease progression.  

 

 
Figure 10. Important features in the optuna-optimized TabNet model 

 

A secondary tier of moderately impactful features was also 

identified, including 'Ascites', 'Platelets', 'N_Days', and 

'Copper', with importance values ranging from approximately 

0.07 to 0.12. The contribution of these features underscores 

the model's ability to integrate a combination of physical 

symptoms and laboratory results. In contrast, a large number 

of other clinical and demographic variables, such as 'SGOT', 

'Bilirubin', and 'Age', were assigned minimal to negligible 

importance. This demonstrates the model's capacity for 

instance-wise feature selection, effectively de-prioritizing 

less relevant information. The resulting feature hierarchy not 

only confirms the model's alignment with clinical knowledge 

but also provides a valuable framework for developing data-

driven medical decision support systems. 

C. Performance Comparison: Baseline TabNet vs. Optuna-

Optimized TabNet 

This section presents a direct comparative analysis of the 

TabNet model's performance before and after hyperparameter 
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optimization with Optuna. To quantify the impact of the 

optimization process, the performance of the baseline model 

is benchmarked against the final, Optuna-optimized model 

across all primary evaluation metrics. As the results in table 

V demonstrate, the optimization led to a significant and 

consistent improvement in accuracy, precision, recall, and F1-

score. 

TABLE V 

BASELINE TABNET VS. OPTUNA-OPTIMIZED TABNET 

Model Accuracy Precision Recall F1-Score 

TabNet 65,11% 66% 65% 65% 

TabNet + 

Optna 

70,37% 70% 70% 70% 

 

As summarized in table V, the hyperparameter 

optimization with Optuna yielded a significant improvement 

in the TabNet model's performance. The baseline model 

established a performance benchmark with an accuracy of 

65.11% and an F1-score of 65%. Following optimization, the 

model's performance improved substantially across all 

metrics, with accuracy increasing by 5.26% to 70.37%. This 

substantial gain is attributed to the transition from generic, 

default hyperparameters to a set specifically tailored to the 

unique characteristics of the dataset. Optuna's intelligent 

search algorithm navigated TabNet's complex parameter 

space to find a configuration that strikes a superior bias-

variance trade-off, enabling the model to better capture the 

underlying data patterns without overfitting. This targeted 

optimization is what unlocked the model's true predictive 

potential, leading directly to the enhanced accuracy and F1-

score. 

Notably, the optimized model achieved a balanced 

performance, with precision, recall, and F1-score all 

converging at 70%. This parity between precision and recall 

is a critical outcome, indicating that the model is equally adept 

at correctly identifying positive cases and minimizing false 

positives. The consistent F1-score of 0.70 further underscores 

this harmonization of metrics, confirming that the Optuna-

optimized configuration produced a more robust and reliable 

classifier, which is essential for clinical decision-making 

applications. 

 

 
Figure 11. TabNet model comparison accuracy before and after optimization 

 

Figure 11 provides a visual summary of the substantial 

performance improvement achieved through hyperparameter 

tuning. The baseline model achieved an accuracy of 65.11%, 

which rose to 70.37% following optimization with Optuna. 

This represents an absolute improvement of 5.26 percentage 

points, directly demonstrating the efficacy of Optuna in 

navigating the complex parameter space to refine the model's 

behavior.  

This accuracy improvement is not merely a numerical gain; 

it signifies enhanced generalization and increased model 

stability. The optimized model is better equipped to handle 

the inherent complexity and variations within the liver 

cirrhosis dataset. In a clinical context, such an improvement, 

while seemingly marginal, can be highly significant, as it 

translates to a more reliable diagnostic tool that can support 

more confident clinical decision-making.  

This study not only highlights the effectiveness and 

interpretability of TabNet-Optuna but also serves as a 

pioneering benchmark for using tabular deep learning models 

in liver cirrhosis staging. This advancement creates 

significant opportunities for integrating artificial intelligence 

(AI) into clinical decision support systems (CDSS). By 

incorporating this model, physicians can receive more 

objective and consistent recommendations for diagnosis and 

staging, aiding in precise treatment planning and better risk 

assessment. Such integration can reduce human errors in 

interpreting lab results and clinical signs, which are often 

subjective, thereby enhancing the quality of medical 

decisions. Ultimately, this improves diagnostic reliability, 

streamlines patient care, and supports the broader adoption of 

AI as a tool for augmented intelligence in daily clinical 

practice. 

D. Error Analysis 

This analysis included the identification of common 

patterns in classification errors, particularly in cases that were 

repeatedly misclassified between liver cirrhosis stage classes. 

The confusion matrix results before optimization showed that 

the model tended to be biased toward class 1 (moderate stage), 

with many cases from class 0 (mild stage) and class 2 (severe 

stage) being misclassified as class 1. This indicates an overlap 

of clinical features between the mild and severe stages and the 

moderate stage, resulting in less decisive model decision 

making. Additionally, the relatively lower AUC performance 

in class 2 before optimization (0.77) reinforces the suspicion 

that the model struggles to distinguish the characteristic 

features of patients with advanced cirrhosis. 

After optimization with Optuna, there was an 

improvement in classification accuracy and balance across all 

three classes. However, misclassification still occurred, 

particularly in the transition between class 0 and class 1. 

Analysis of misclassified instances revealed that most of these 

data points had overlapping feature threshold values, such as 

albumin and platelet levels that fell within the normal range 

but also appeared in patients with mild and moderate stages. 

This indicates that ambiguity in clinical features with 
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overlapping value distributions remains a significant 

challenge. 

Additionally, although the “Prothrombin” and 

“Hepatomegaly” features were consistently identified as the 

most important features by TabNet, there were specific cases 

where the values of these features were within the normal 

range but the data was classified into the wrong stage. This 

phenomenon suggests that over-reliance on dominant features 

without considering the combination of other contextual 

features can reduce prediction accuracy. In summary, the 

error analysis highlights the need to improve data balancing 

strategies, outlier detection, and the integration of explainable 

AI methods to increase the model's accuracy and reliability in 

a clinical setting. 

E. Comparision with Previous Research 

To contextualize the performance of the Optuna-optimized 

TabNet model, a comparison was made with results from 

previous studies on similar liver cirrhosis classification tasks, 

as summarized in table VI. The optimized TabNet model 

achieved an accuracy of 70.37%, positioning it competitively 

against established conventional and ensemble methods. 

Specifically, the model comfortably outperforms the Support 

Vector Machine approach (67.68%) and achieves 

performance on par with the CART method (>70%). 

Notably, its accuracy is nearly equivalent to that of the 

more complex Ensemble Bagged Tree model (71%). This is a 

significant finding, as it demonstrates that a single, 

interpretable deep learning architecture, when properly 

optimized, can match the predictive power of ensemble 

methods, which often sacrifice interpretability for 

performance. This competitive performance is attributed to 

TabNet's inherent capacity to capture complex, non-linear 

relationships within the data, a capability that was fully 

unlocked through systematic hyperparameter optimization. 

TABLE VI 

PERFORMANCE COMPARISON WITH PREVIOUS RESEARCH 

Reference Method Accuracy 

[8] CART Decision Tree  >70% 

[9] Support Vector Machine 67,68% 

[10] Ensamble Bagged Tree 71% 

Ours  TabNet + Optuna 70,37% 

 

F. Limitation of the Study 

This study successfully showed that using TabNet 

optimized with Optuna improved accuracy and 

interpretability, but there are several limitations to consider. 

Firstly, the model was only tested on publicly available 

secondary datasets and has not been validated with actual 

clinical data from medical institutions. This restricts the 

model’s ability to generalize, as public data may not fully 

capture the wide range of patient characteristics found in real 

populations. 

Secondly, the study did not perform external validation 

using independent datasets from different healthcare 

facilities. External validation is crucial to confirm the model’s 

robustness, reliability, and readiness for clinical application. 

Without it, the model may still suffer from biases due to 

limited data representation, potentially reducing prediction 

accuracy in real-world settings. 

Therefore, future research should aim to use more varied 

local clinical data and carry out external validations across 

multiple centers. This will provide stronger proof that the 

TabNet-Optuna model not only excels in experiments based 

on public datasets but also has practical significance and real 

clinical value in supporting AI-driven medical decisions. 

 

IV. CONCLUSION 

This research aims to classify the severity of liver cirrhosis 

based on tabular clinical data using the TabNet deep learning 

model optimized with Optuna. The initial TabNet model 

showed an accuracy of 65.11% with relatively balanced 

performance across the three classification classes. After 

hyperparameter optimization using Optuna, the model's 

performance improved significantly, achieving an accuracy of 

70.37% and improvements in all primary evaluation metrics, 

including precision, recall, and F1-score, each reaching 70%. 

Additionally, the TabNet model provides good 

interpretability through feature importance mapping, where 

features such as Prothrombin, Hepatomegaly, and Albumin 

were identified as the most significant indicators in the 

diagnosis of liver cirrhosis. 

However, this research has limitations in terms of the scope 

of testing, which is still limited to secondary datasets and does 

not involve direct clinical data from local medical institutions. 

In addition, although hyperparameter optimization was 

performed using Optuna, the approach used still focuses on a 

single model without direct comparison with other deep 

learning architectures. Therefore, future development efforts 

could focus on utilizing larger and more representative 

clinical datasets, exploring data balancing methods, and 

applying alternative architectures such as Transformer-based 

tabular models to improve prediction accuracy and model 

robustness against medical data variations. Overall, the 

findings from this research indicate that TabNet not only 

excels in accuracy performance after optimization but also 

offers advantages in terms of interpretability and clinical 

relevance through feature selection. Thus, the optimized 

TabNet model has significant potential for implementation in 

clinical decision support systems, particularly in supporting 

more efficient, accurate, and data-driven early detection and 

risk management of liver cirrhosis. 
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