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Liver cirrhosis is a progressive chronic disease whose early detection poses a clinical
challenge, making accurate severity staging crucial for patient management. This
research proposes and evaluates a TabNet deep learning model, specifically designed
for tabular data, to address this challenge. In the initial evaluation, a baseline TabNet
model with its default configuration achieved a baseline accuracy of 65.11% on a
public clinical dataset. To enhance performance, hyperparameter optimization using
Optuna was implemented, which successfully increased the accuracy significantly to
70.37%, with precision, recall, and F1-score metrics each reaching 70%. The model's
discriminative ability was also validated as reliable in multiclass classification
through AUC metric evaluation. In addition to accuracy improvements, the model's
interpretability was validated through the identification of key predictive features
such as Prothrombin and Hepatomegaly, which align with clinical indicators. This
study demonstrates that Optuna-optimized TabNet is an effective and interpretable
approach, possessing significant potential for integration into clinical decision

support systems to support a more precise diagnosis of liver cirrhosis.

This is an open access article under the CC-BY-SA license.

I. INDRODUCTION

Liver cirrhosis is a chronic medical condition characterized
by progressive, long-term damage to liver tissue, wherein
healthy tissue is gradually replaced by excessive fibrosis. This
process disrupts the liver's normal structure and function,
potentially leading to liver failure and hepatocellular
carcinoma [1]. As a leading cause of mortality globally,
particularly in developing nations, its prevalence is driven by
risk factors such as chronic alcohol consumption, viral
hepatitis, and Non-Alcoholic Fatty Liver Disease (NAFLD)
[2]. The significance of liver cirrhosis is amplified by its
often-asymptomatic nature in the early stages, with detection
frequently occurring only at an advanced stage. This delay
complicates medical intervention, reduces treatment efficacy,
and imposes a substantial burden on healthcare systems [3].

According to the World Health Organization (WHO), liver
cirrhosis affects approximately 3% of the global population,
with an estimated 3 to 4 million new cases diagnosed
annually. The etiology of the disease exhibits significant

regional variation; in Indonesia, hepatitis B and C are the
predominant causes, whereas in Western countries, chronic
alcohol consumption is the primary driver [4]. This global
health issue underscores the critical need for advanced and
precise scientific approaches for early detection and
prevention to mitigate mortality.

Challenges in managing liver cirrhosis are exacerbated by
delayed diagnosis, often stemming from a lack of regular
public health screenings [5]. Suboptimal management of the
disease leads to high mortality rates and places a significant
strain on healthcare resources. While early detection is
crucial, it remains difficult without accurate predictive tools
[6]. Neglected cases of cirrhosis can progress to fatal liver
cancer, with elderly individuals and patients with chronic
hepatitis being the most vulnerable populations [7].

Previous studies have attempted to use machine learning
approaches to predict the risk of liver cirrhosis. For example,
a study by Yasmin Roni Mz (2024) used the CART method
to generate a Decision Tree algorithm on a liver cirrhosis
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prediction dataset, resulting in an accuracy of less than 70%
in identifying patients with potential cirrhosis [8]. A
subsequent study by Vania Riskasari YR (2023) used the
support vector machine (SVM) algorithm and demonstrated
good performance with an accuracy of 67.68% [9].
Meanwhile, the latest study conducted by Mardewi (2024)
using the Ensemble Bagged Tree model achieved the highest
accuracy of 71%, followed by Ensemble Boosted Tree
(67.2%) and Ensemble RUSBoosted Tree (66%) for
classifying patients with various stages of liver cirrhosis [10].
Although various approaches have been used for the
prediction and classification of liver cirrhosis, there are still a
number of research gaps that need to be addressed. First,
research by Yasmin Roni Mz (2024) using the CART method
resulted in low accuracy (<70%) due to data imbalance and
dependence on data structure, without cross-validation or
comparison with other models. Second, Vania Riskasari YR
(2023) used SVM with an accuracy of 67.86%, but did not
optimally handle minority classes and only relied on the RBF
kernel without exploring data balancing techniques. Third,
Mardewi and Supriyadi La Wungo (2024) compared several
ensemble models, but their evaluation was still limited to
accuracy, without considering metrics such as Fl-score or
AUC, and did not apply an Explainable Al (XAI) approach.
Additionally, there has been no research on long term
cirrhosis progression prediction or survival analysis. In
medical research for classification, machine learning methods
have been widely used as a general approach to create
accurate classifications and predictions, but their performance
depends on the dataset used [11]. On the other hand, although
most studies have used real clinical data, none have
specifically explored the potential of the TabNet deep
learning model designed for tabular data, which offers
advantages in feature selection and interpretability.
Therefore, further research is needed to explore more adaptive
models and the use of architectures such as TabNet to improve
the accuracy and applicability of liver cirrhosis predictions.
In response to this architectural gap, TabNet has emerged
as a state of the art model specifically engineered for tabular
data. It uniquely integrates concepts from decision trees into
a deep learning framework, employing a sequential attention
mechanism to perform instance-wise feature selection. This
design not only enables TabNet to capture complex patterns
but also provides a degree of interpretability, a crucial feature
for clinical applications. Given these advantages, TabNet
presents a compelling candidate for addressing the challenges
of liver cirrhosis classification. This research aims to fully
leverage this potential by implementing a deep learning based
framework for liver cirrhosis prediction, utilizing the TabNet
model with hyperparameter optimization. TabNet is
specifically engineered for tabular data, demonstrating robust
capabilities in capturing complex patterns and relationships
within structured clinical patient data [12]. TabNet's inherent
ability to perform automatic feature selection can reduce
manual workload and increase implementation efficiency
[13]. However, even a powerful architecture like TabNet is

not guaranteed to perform optimally out of the box, as its
performance is highly sensitive to the choice of
hyperparameters. To systematically navigate this complex
parameter space and unlock TabNet's full predictive potential,
this research employs Optuna, a state of the art Bayesian
optimization framework. The integration of Optuna is critical
for achieving optimal model accuracy and resilience through
dynamic parameter searching [14].

The primary objective of this research is to develop and
systematically evaluate an Optuna optimized TabNet model
for the multiclass classification of liver cirrhosis severity from
clinical tabular data. The novelty of this research lies in its
specific application and rigorous optimization of the TabNet
architecture, a model engineered for tabular data, for this
critical clinical challenge, an area that remains underexplored
in the existing literature. By doing so, this study contributes a
robust, high performing, and interpretable framework that not
only outperforms a baseline model but also provides a
validated pathway for enhancing diagnostic precision in liver
cirrhosis management.

II. METHOD

This research aims to classify the severity of liver cirrhosis
in target stages that indicate the disease has reached stage one,
two, or three by developing and evaluating the TabNet model,
which is part of a deep learning classification model [15]. The
research methodology, as illustrated in figure 1, encompasses
a multi-stage workflow. This process begins with dataset
preparation and preprocessing, followed by data splitting.
Subsequently, the TabNet model is trained and then refined
through hyperparameter optimization using Optuna, with a
final evaluation conducted on both the training and testing
sets.
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Figure 1. Research flow
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A. Dataset Preparation

This research wused a dataset from Kaggle
(https://www.kaggle.com/datasets/aadarshvelu/liver-
cirrhosis-stage-classification)  that  contains  medical
information about patients with liver cirrhosis. It consists of
25,000 rows of data with 19 features, and 3 class labels of
stage (1,2,3) including numeric data (N_Days, Age, Bilirubin,
Cholesterol,  Albumin, Copper, Alk Phos, SGOT,
Triglycerides, Platelets, Prothrombin, and Stage) and non-
numeric data (Status, Drug, Sex, Ascites, Hepatomegaly,
Spiders, and Edema).

Distribution of Liver Cirrhosis Patients
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Figure 2 . Dataset distribution

The distribution of classes within the dataset is balanced,
as illustrated in figure 2, which provides a solid foundation
for building classification models without significant class
imbalance bias. However, despite the relatively large initial
size, the effective dataset became limited after preprocessing
steps, particularly the removal of 15,361 duplicate entries,
leaving only 9,639 unique data points available for model
training and evaluation. This considerable reduction in dataset
size imposes limitations on the model’s capacity to generalize
and fully capture the clinical heterogeneity present in liver
cirrhosis patients. Although class balance is maintained
within the reduced data, the smaller volume increases the
vulnerability to overfitting and may reduce the robustness of
the model when applied to unseen clinical data.
Consequently, this highlights the necessity for future research
to incorporate larger, more diverse, and representative clinical
datasets to enhance model reliability and applicability in real-
world medical settings.

B. Data Preprocessing

Preprocessing data is a crucial initial stage in building a
deep learning model because good data quality greatly affects
the model's performance. In this research, the preprocessing
stage consisted of two steps:

1) Remove Duplicate: This step aims to remove
duplicate data rows in the dataset. This dataset has 15,361

duplicate data points. The remaining data used is 9,639 data
points.

2) Label Encoding: Label encoding is a technique for
converting categorical features in the form of text into
numerical values [16]. Features that will be encoded include
non-numeric features consisting of Status, Drug, Sex, Ascites,
Hepatomegaly, Spiders, and Edema.

C. Split Data

The preprocessed dataset was partitioned into a 70%
training set and a 30% testing set using a stratified split to
maintain the original class distribution in both subsets. This
approach ensures an unbiased evaluation of the model's
ability to generalize to unseen data [17].

Adhering to a 70/30 split ratio, the dataset was divided into
two distinct subsets: a training set and a testing set. The
training set, comprising 6,747 instances, was utilized
exclusively for the model development and learning phase.
The remaining 2,892 instances constituted the testing set,
which was held out to provide an unbiased assessment of the
final model's performance.

D. TabNet Model

TabNet is a deep learning framework designed for tabular
data, integrating representation learning with interpretability.
Through sequential attention and sparse feature selection, it
adaptively identifies the most informative features at each
decision step, enhancing both predictive accuracy and
efficiency [18].

The main advantage of TabNet is its ability to maintain
transparency in the decision-making process through feature
attribution visualization mechanisms [19]. Additionally,
TabNet is suitable for application in the medical domain, as it
addresses the interpretability limitations of conventional deep
learning and provides accurate predictive results on
heterogeneous data such as patient data [16].

As shown in figure 3, at each step of the decision making
process, TabNet employs a specific formula to determine the
most significant features, as outlined figure 3.

Fully
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Batch |
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Features

Fealures
atributas

Figure 3. TabNet architecture framework

First, the data passes through a batch normalization layer
before being processed by the feature transformer. Extracting
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features from the normalized input is the responsibility of the

feature transformer module. Each feature transformer is accuracy = ——+™ ©)

divided into two parts: the first part uses shared parameters, TP+ TN +FP+FN

while the second part has independent parameters and is Precisi .
recision measures how accurate the model is when

trained specifically for each step [15]. This architecture
consists of two parts, each of which has a fully connected
layer followed by batch normalization (BN) and gated linear
units (GLU). The output from each part is normalized again
to maintain variance stability and facilitate learning within the
TabNet architecture. The TabNet architecture is composed of
three main components. The Feature Transformer processes
features into initial latent representations, which are then
passed to the Attentive Transformer. The Attentive
Transformer identifies the most relevant features to focus on
in the subsequent decision step. Equation (1) is the formula
for the TabNet mechanism.

M([i] = sparsemax(P[i — 1] - h;(al[i — 1])) (1)
a[i — 1] is the characteristic information shared by the split in
the final decision, h; describes the BN and FC layers, P[i — 1]
is the feature usage priority scale, and sparsemex can produce
less frequent output results [20]. Thus, TabNet can provide
good performance by performing sparse feature selection to
support model interpretability [21]. In the context of liver
cirrhosis classification, the application of TabNet is relevant
because patient clinical data is generally multidimensional
tabular data with complex inter-feature relationships, and
requires a system that is not only accurate but also clinically
accountable.

E. Hyperparameter Optimization

The optimization of a model's hyperparameters is essential
[22], as these factors critically determine its learning ability
and generalization performance. In this research, Optuna
Model was utilized for optimalization parameter. Built around
the "define-by-run" principle, Optuna supports a dynamic and
flexible approach to parameter exploration. The framework
incorporates efficient search mechanisms and pruning
strategies, along with a highly adaptable architecture suitable
for diverse optimization tasks.

The methodological approach consisted of three stages.
Initially, the hyperparameters and their specific search spaces
were meticulously defined for each model. Subsequently, an
objective function was formulated to maximize model
performance, and the total number of optimization trials
(n_trials) was specified. The final stage involved a thorough
evaluation of the optimization outcomes to identify the
optimal hyperparameter configurations.

F. Evaluation Model

This research used several key classification metrics to
evaluate the data: accuracy, precision, recall, F1-score, and
area under the curve (AUC-ROC). Equation (2) is the
accuracy formula for the model performance evaluation
metric.

predicting positive cases, whereas recall shows how well the
model identifies all actual positive instances. The formulas for
calculating both precision and recall are provided in Equation
(3) as part of the performance evaluation metrics.

TP
TP+FN

. . TP
precision = — recall =

+FP’ @)
The Fl-score is the harmonic mean of precision and recall,
which provides a more balanced assessment of the two
metrics. Equation (4) is the F1-Score formula for model
performance evaluation metrics.

Precesion X Recall
F1—Score =2 X ————— )
Precision + Recall

The ROC curve is a graphical tool that illustrates the
relationship between sensitivity (TPR) and false positive rate
(FPR) under different classification thresholds [26].
Sensitivity indicates the proportion of positives correctly
detected, while FPR shows negatives incorrectly classified as
positives. This value can be calculated using the equation
shown in Formula (5).

TPR = ——— ,FPR =
TP + FN

FP
FP+TN

®)

II1. RESULT AND DISCUSSION

This section details the implementation and evaluation of
an Optuna-optimized TabNet model for classifying liver
cirrhosis severity.

A. Result of TabNet Baseline Model

The initial phase of the study focused on establishing a
baseline performance for the TabNet model. While the core
TabNet architecture was utilized with its default settings, the
training process was governed by a specific set of parameters,
as detailed in table I. The model was trained for a maximum
of 50 epochs, with an early stopping patience of 10 epochs
implemented to prevent overfitting. A batch size of 256 and a
virtual batch size of 128 were used to balance computational
efficiency and gradient stability. This configuration was
intentionally chosen to provide a standardized, out-of-the-box

performance  benchmark  before  proceeding  with
hyperparameter optimization.
TABLEI
PARAMETERS SETTINGS
TabNet Model Parameters

max_epochs 50

patience 10

batch_size 256

virtual batch size 128
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The performance of the baseline TabNet model is detailed
in table II. Table II presents the classification performance of
the baseline TabNet model on the testing set. The model
achieved an overall accuracy of 65.11%. The macro and
weighted averages for precision, recall, and F1-score were
highly consistent at approximately 0.65-0.66, indicating that
the model's performance was relatively balanced across the
three classes, as expected given the similar support values for
each class. A closer examination of the per-class metrics
reveals varying performance: the model was most effective at
classifying Class 2 (Fl-score: 0.72) but struggled
significantly with Class 1, which had a notably low precision
of 0.57. Despite the moderate accuracy, the Area Under the
Curve (AUC) of 0.8263 suggests the model possesses good
discriminative power. Overall, these results establish a
reasonable but clearly improvable performance baseline, with
specific weaknesses to be addressed through hyperparameter
optimization.

TABLE II
CLASSIFICATION PERFORMANCE OF THE BASELINE MODEL
Precision Recall Fl-score | Support

0 0.65 0.62 0.63 908
1 0.57 0.65 0.61 992
2 0.75 0.69 0.72 992
macro 0.66 0.65 0.65 2892
avg

weighted 0.66 0.65 0.65 2892
avg

AUC 0.8263

Accuracy | 0.6511

The confusion matrix for the baseline model, shown in
figure 4, illustrates its performance in the multiclass
classification task. The main diagonal highlights a substantial
number of correct predictions, with the model accurately
classifying 559, 640, and 684 samples for Class 0, 1, and 2,
respectively. However, the off-diagonal values reveal a
significant systematic bias. The model demonstrates a clear
propensity to misclassify samples into Class 1 (moderate
stage), incorrectly assigning 270 samples from Class 0 and
211 samples from Class 2 to this category. This pattern
suggests that the feature distributions of Class 1 may overlap
significantly with those of the adjacent classes, making it a
common point of confusion for the baseline model. While the
number of correct classifications confirms the model's
fundamental effectiveness, this pronounced bias highlights a
critical area for improvement through hyperparameter
optimization.

Confusion Matrix
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Figure 4. Confusion matrix of the baseline model

The model's per-class discriminative performance was
evaluated using One-vs-Rest (OvR) ROC curves, as shown in
figure 5. The model demonstrates strong performance in
distinguishing Class 2 (severe) from the others, achieving the
highest AUC of 0.87, and also performs well on Class 0 (mild)
with an AUC of 0.84. However, the model's ability to
discriminate Class 1 (moderate) is notably weaker, with an
AUC of 0.77. This lower score for the intermediate class
aligns with the findings from the confusion matrix (Figure 4),
which revealed a significant tendency for the model to
misclassify samples from both Class 0 and Class 2 into this
category. Nevertheless, as all curves lie well above the
diagonal line of random chance, the results confirm that the
baseline model possesses significant predictive power overall.

Receiver Operating Characteristic (ROC) Curve {One-vs-Rest]
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Figure 5. ROC curve of the baseline model
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Figure 6. Important features in the Tabnet baseline model

The feature importance analysis for the baseline TabNet
model, illustrated in figure 6, identifies a clear hierarchy of
predictive features. The analysis reveals a clear hierarchy of
feature influence, which can be categorized into three distinct
tiers. The top tier of predictors, with importance scores
approaching 0.20, is dominated by clinically critical markers
of liver function and decompensation: 'Prothrombin’,
'Albumin’, and 'Edema’. The high ranking of these features
aligns with established medical knowledge, as they directly
reflect the liver's synthetic capacity and the presence of fluid
retention, key indicators of cirrhosis severity. An intermediate
tier of features, including 'Hepatomegaly', 'Age', 'Platelets’,
and 'Cholesterol', also demonstrates significant predictive
value. These features represent a mix of physical examination
findings, demographic data, and secondary laboratory
markers that provide important contextual information for
staging. Finally, a large number of features, such as 'SGOT",
'Bilirubin', and 'Sex', exhibited minimal to negligible
importance, indicating that the TabNet model's attention
mechanism effectively learned to de-prioritize less relevant or
redundant information. This instance-wise feature selection is
a key strength of the TabNet architecture.

B. Model Optimization Results with Optuna

While the baseline TabNet model demonstrated a
foundational predictive capability, its initial performance was
deemed unsatisfactory, highlighting the need for systematic
optimization. Therefore, to enhance the model's accuracy,
stability, and generalization, hyperparameter optimization
was conducted using the Optuna framework. This subsequent
phase aimed to identify the optimal set of parameters to
unlock the full potential of the TabNet architecture on this
specific dataset.

TABLE IV
OPTUNA PARAMETERS SETTINGS
Parameters Range

n d 138
n a 146
n_steps 4
gamma 1.169
lambda sparse 6.126e-06

2207
momentum 0.104
clip_value 2.346
learning rate 0.037
weight decay 5.337¢-06
batch_size 128

Following the hyperparameter optimization process with
Optuna, the optimal configuration for the TabNet model was
identified, as detailed in table IV. The optimal architecture
was defined by an attention dimension (n_a) of 146 and a
feature dimension (n_d) of 138, with 4 decision steps
(n_steps). Key training parameters were fine-tuned to balance
learning and regularization: the learning rate was set to 0.037,
with a momentum of 0.104 and a gamma of 1.169. To prevent
overfitting, regularization parameters were optimized to
lambda_sparse = 6.126e-06 and weight decay = 5.337e-06,
while a clip_value of 2.346 ensured gradient stability. Finally,
a batch size of 128 was found to be optimal. This specific
combination of parameters, discovered through Optuna's
efficient exploration, represents the configuration that yielded
the highest model performance.

The accuracy evaluation of the optimized model is
presented in figure 7. The graph shows a rapid and parallel
increase in both accuracies during the initial epochs,
indicating efficient learning from the data. As training
progresses, the curves begin to plateau, with the training
accuracy converging to approximately 0.74-0.75 and the
validation accuracy stabilizing around 0.69-0.70. The close
proximity and parallel trajectory of the two curves are
particularly noteworthy, as they demonstrate strong
generalization and confirm that the model is not overfitting to
the training data. This stability in the later epochs indicates
that the model has reached convergence, and that the
optimized parameters have successfully guided the learning
process to a robust solution.

Accuracy Evolution
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Figure 7. Optuna-optimized TabNet model accuracy
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Figure 8. Confusion matrix of the optuna-optimized TabNet model

The confusion matrix for the optimized model, depicted in
figure 8, demonstrates a significant enhancement in
classification accuracy and reliability. The main diagonal
shows a marked increase in true positives, with the model now
correctly classifying 637, 628, and 770 samples for Class 0,
1, and 2, respectively. A key improvement is the significant
reduction in the systematic bias towards Class 1; for instance,
the misclassification of Class 0 as Class 1 dropped from 270
to 186 instances. While some confusion between adjacent
classes persists, the overall number of misclassifications has
decreased considerably. This enhanced performance,
characterized by a significant reduction in false positives and
false negatives, confirms that the optimized model is not only
more accurate but also more balanced and reliable, making it
a stronger candidate for providing trustworthy decision
support in clinical settings.

Optuna Hyperparameter Tuning Progress
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Figure 9. Optuna-optimized TabNet model hyperparameter

The hyperparameter optimization process, facilitated by
the Optuna framework, is illustrated in figure 9. The graph
clearly demonstrates the effectiveness of the Tree-structured

Parzen Estimator (TPE) algorithm, which intelligently guides
the search toward more promising regions of the parameter
space. This is evidenced by the upward trend in the best-
achieved score (the red line), which converges as the number
of trials increases. The concentration of high-scoring trials in
later stages indicates that Optuna successfully learned from
previous results to focus on high-performance configurations.
Furthermore, this guided search, combined with Optuna's
ability to prune unpromising trials early, resulted in a more
computationally efficient optimization process compared to
traditional methods like grid or random search, ultimately
leading to a superior final model.

The feature importance analysis of the optimized TabNet
model, illustrated in figure 10, identifies a distinct hierarchy
of predictive features. The analysis reveals a clear hierarchy
of feature influence, with 'Prothrombin' emerging as the
single most dominant predictor, having an importance value
approaching 0.20. Following this, a primary tier of highly
significant features includes 'Hepatomegaly' and 'Albumin’,
both of which are established clinical indicators of liver
function and disease progression.

3

B
o
i
i

in the optuna-optimized Tabhet model

Figure 10. Important features in the optuna-optimized TabNet model

A secondary tier of moderately impactful features was also
identified, including 'Ascites', 'Platelets', 'N_Days', and
'Copper’, with importance values ranging from approximately
0.07 to 0.12. The contribution of these features underscores
the model's ability to integrate a combination of physical
symptoms and laboratory results. In contrast, a large number
of other clinical and demographic variables, such as 'SGOT',
'Bilirubin', and 'Age', were assigned minimal to negligible
importance. This demonstrates the model's capacity for
instance-wise feature selection, effectively de-prioritizing
less relevant information. The resulting feature hierarchy not
only confirms the model's alignment with clinical knowledge
but also provides a valuable framework for developing data-
driven medical decision support systems.

C. Performance Comparison: Baseline TabNet vs. Optuna-
Optimized TabNet

This section presents a direct comparative analysis of the
TabNet model's performance before and after hyperparameter

JAIC Vol. 9, No. 5, October 2025: 2202 — 2211
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optimization with Optuna. To quantify the impact of the
optimization process, the performance of the baseline model
is benchmarked against the final, Optuna-optimized model
across all primary evaluation metrics. As the results in table
V demonstrate, the optimization led to a significant and
consistent improvement in accuracy, precision, recall, and F1-
score.

TABLEV
BASELINE TABNET VS. OPTUNA-OPTIMIZED TABNET
Model Accuracy | Precision Recall F1-Score
TabNet 65,11% 66% 65% 65%
TabNet + | 70,37% 70% 70% 70%
Optna
As summarized in table V, the hyperparameter

optimization with Optuna yielded a significant improvement
in the TabNet model's performance. The baseline model
established a performance benchmark with an accuracy of
65.11% and an F1-score of 65%. Following optimization, the
model's performance improved substantially across all
metrics, with accuracy increasing by 5.26% to 70.37%. This
substantial gain is attributed to the transition from generic,
default hyperparameters to a set specifically tailored to the
unique characteristics of the dataset. Optuna's intelligent
search algorithm navigated TabNet's complex parameter
space to find a configuration that strikes a superior bias-
variance trade-off, enabling the model to better capture the
underlying data patterns without overfitting. This targeted
optimization is what unlocked the model's true predictive
potential, leading directly to the enhanced accuracy and F1-
score.

Notably, the optimized model achieved a balanced
performance, with precision, recall, and F1-score all
converging at 70%. This parity between precision and recall
is a critical outcome, indicating that the model is equally adept
at correctly identifying positive cases and minimizing false
positives. The consistent F1-score of 0.70 further underscores
this harmonization of metrics, confirming that the Optuna-
optimized configuration produced a more robust and reliable
classifier, which is essential for clinical decision-making
applications.

Accuracy Comparison Before and After Tuning

0.7037
0.6511

Figure 11. TabNet model comparison accuracy before and after optimization

Figure 11 provides a visual summary of the substantial
performance improvement achieved through hyperparameter
tuning. The baseline model achieved an accuracy of 65.11%,
which rose to 70.37% following optimization with Optuna.
This represents an absolute improvement of 5.26 percentage
points, directly demonstrating the efficacy of Optuna in
navigating the complex parameter space to refine the model's
behavior.

This accuracy improvement is not merely a numerical gain;
it signifies enhanced generalization and increased model
stability. The optimized model is better equipped to handle
the inherent complexity and variations within the liver
cirrhosis dataset. In a clinical context, such an improvement,
while seemingly marginal, can be highly significant, as it
translates to a more reliable diagnostic tool that can support
more confident clinical decision-making.

This study not only highlights the effectiveness and
interpretability of TabNet-Optuna but also serves as a
pioneering benchmark for using tabular deep learning models
in liver cirrhosis staging. This advancement creates
significant opportunities for integrating artificial intelligence
(Al) into clinical decision support systems (CDSS). By
incorporating this model, physicians can receive more
objective and consistent recommendations for diagnosis and
staging, aiding in precise treatment planning and better risk
assessment. Such integration can reduce human errors in
interpreting lab results and clinical signs, which are often
subjective, thereby enhancing the quality of medical
decisions. Ultimately, this improves diagnostic reliability,
streamlines patient care, and supports the broader adoption of
Al as a tool for augmented intelligence in daily clinical
practice.

D. Error Analysis

This analysis included the identification of common
patterns in classification errors, particularly in cases that were
repeatedly misclassified between liver cirrhosis stage classes.
The confusion matrix results before optimization showed that
the model tended to be biased toward class 1 (moderate stage),
with many cases from class 0 (mild stage) and class 2 (severe
stage) being misclassified as class 1. This indicates an overlap
of clinical features between the mild and severe stages and the
moderate stage, resulting in less decisive model decision
making. Additionally, the relatively lower AUC performance
in class 2 before optimization (0.77) reinforces the suspicion
that the model struggles to distinguish the characteristic
features of patients with advanced cirrhosis.

After optimization with Optuna, there was an
improvement in classification accuracy and balance across all
three classes. However, misclassification still occurred,
particularly in the transition between class 0 and class 1.
Analysis of misclassified instances revealed that most of these
data points had overlapping feature threshold values, such as
albumin and platelet levels that fell within the normal range
but also appeared in patients with mild and moderate stages.
This indicates that ambiguity in clinical features with
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overlapping value distributions remains a significant
challenge.
Additionally, although the ‘“Prothrombin” and

“Hepatomegaly” features were consistently identified as the
most important features by TabNet, there were specific cases
where the values of these features were within the normal
range but the data was classified into the wrong stage. This
phenomenon suggests that over-reliance on dominant features
without considering the combination of other contextual
features can reduce prediction accuracy. In summary, the
error analysis highlights the need to improve data balancing
strategies, outlier detection, and the integration of explainable
Al methods to increase the model's accuracy and reliability in
a clinical setting.

E. Comparision with Previous Research

To contextualize the performance of the Optuna-optimized
TabNet model, a comparison was made with results from
previous studies on similar liver cirrhosis classification tasks,
as summarized in table VI. The optimized TabNet model
achieved an accuracy of 70.37%, positioning it competitively
against established conventional and ensemble methods.
Specifically, the model comfortably outperforms the Support
Vector Machine approach (67.68%) and achieves
performance on par with the CART method (>70%).

Notably, its accuracy is nearly equivalent to that of the
more complex Ensemble Bagged Tree model (71%). This is a
significant finding, as it demonstrates that a single,
interpretable deep learning architecture, when properly
optimized, can match the predictive power of ensemble
methods, which often sacrifice interpretability for
performance. This competitive performance is attributed to
TabNet's inherent capacity to capture complex, non-linear
relationships within the data, a capability that was fully
unlocked through systematic hyperparameter optimization.

TABLE VI
PERFORMANCE COMPARISON WITH PREVIOUS RESEARCH
Reference Method Accuracy
[8] CART Decision Tree >70%
[9] Support Vector Machine | 67,68%
[10] Ensamble Bagged Tree 71%
Ours TabNet + Optuna 70,37%

F. Limitation of the Study

This study successfully showed that using TabNet
optimized with Optuna improved accuracy and
interpretability, but there are several limitations to consider.
Firstly, the model was only tested on publicly available
secondary datasets and has not been validated with actual
clinical data from medical institutions. This restricts the
model’s ability to generalize, as public data may not fully
capture the wide range of patient characteristics found in real
populations.

Secondly, the study did not perform external validation
using independent datasets from different healthcare

facilities. External validation is crucial to confirm the model’s
robustness, reliability, and readiness for clinical application.
Without it, the model may still suffer from biases due to
limited data representation, potentially reducing prediction
accuracy in real-world settings.

Therefore, future research should aim to use more varied
local clinical data and carry out external validations across
multiple centers. This will provide stronger proof that the
TabNet-Optuna model not only excels in experiments based
on public datasets but also has practical significance and real
clinical value in supporting Al-driven medical decisions.

IV. CONCLUSION

This research aims to classify the severity of liver cirrhosis
based on tabular clinical data using the TabNet deep learning
model optimized with Optuna. The initial TabNet model
showed an accuracy of 65.11% with relatively balanced
performance across the three classification classes. After
hyperparameter optimization using Optuna, the model's
performance improved significantly, achieving an accuracy of
70.37% and improvements in all primary evaluation metrics,
including precision, recall, and F1-score, each reaching 70%.
Additionally, the TabNet model provides good
interpretability through feature importance mapping, where
features such as Prothrombin, Hepatomegaly, and Albumin
were identified as the most significant indicators in the
diagnosis of liver cirrhosis.

However, this research has limitations in terms of the scope
of testing, which is still limited to secondary datasets and does
not involve direct clinical data from local medical institutions.
In addition, although hyperparameter optimization was
performed using Optuna, the approach used still focuses on a
single model without direct comparison with other deep
learning architectures. Therefore, future development efforts
could focus on utilizing larger and more representative
clinical datasets, exploring data balancing methods, and
applying alternative architectures such as Transformer-based
tabular models to improve prediction accuracy and model
robustness against medical data variations. Overall, the
findings from this research indicate that TabNet not only
excels in accuracy performance after optimization but also
offers advantages in terms of interpretability and clinical
relevance through feature selection. Thus, the optimized
TabNet model has significant potential for implementation in
clinical decision support systems, particularly in supporting
more efficient, accurate, and data-driven early detection and
risk management of liver cirrhosis.
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