Journal of Applied Informatics and Computing (JAIC)
Vol.9, No.5, October 2025, pp. 2912~2919

e-ISSN: 2548-6861

2912

Comparative Study of Manual and Generated Data Transfer Object

Implementation Performance

Chandro Pardede'?*, Wilson Sihombing', Winfrey Nainggolan'

! Faculty of Informatics and Electrical Engineering, Del Institute of Technology, Sitoluama, 22381, Indonesia
2 Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Ishikawa, 920-1192, Japan
chandro.pardede@del.ac.id !, iss2201 1 @students.del.ac.id?, iss22001 @students.del.ac.id?

Article Info

ABSTRACT

Article history:

Received 2025-08-17
Revised 2025-09-15
Accepted 2025-10-18

Keyword:

Data Transfer Object,
Flutter,
json_serializable,
Parsing,
Performance.

The Data Transfer Object (DTO) plays a crucial role in Flutter application
development, particularly in the process of data serialization and deserialization.
This study compares two DTO implementation approaches namely manual and
generated with a focus on execution speed and memory usage efficiency. Testing
was conducted at three data complexity levels (Small, Medium, Large) over 100
iterations using Flutter DevTools. The results show that the generated approach
(using libraries like json_serializable) outperforms the manual approach in parsing
speed, with a ratio of 1:1.147, and memory efficiency, with a ratio of 1:1.42. While
the manual approach offers more flexibility in handling conditional parsing logic, it
is more error-prone and less efficient when processing large datasets. In contrast, the
generated approach proves faster, more scalable, and reduces the potential for human
errors, making it the optimal choice for projects requiring technical efficiency and
rapid development. This study recommends using generated DTOs for applications
with large data sets and high complexity, while manual DTOs are better suited for
dynamic parsing needs.

This is an open access article under the CC—BY-SA license.

1. INTRODUCTION

The development of modern mobile applications
increasingly emphasizes efficiency and performance,
especially on platforms like Flutter, which offers a cross-
platform approach with performance close to native [1]. One
common practice in Flutter development is the use of Data
Transfer Objects (DTOs) to separate the data representation
from the application’s logic entities. DTOs act as a bridge
between the data received from the server and the
components within the application [2]. In practice, DTOs can
be created manually or through code generation using
libraries or annotations [3]. Each of these approaches has its
own strengths in terms of data structuring, code clarity, and
full control over the JSON format [4]. The novelty of this
research lies in its specific comparative focus on the
implementation of manual and generated Data Transfer
Objects (DTOs) in Flutter application development,
emphasizing runtime performance and memory usage

efficiency. This differentiates it from previous studies that
generally discuss Flutter optimization in a broader sense. The
aim of this research is to evaluate the performance
comparison between the two approaches, with the main
focus on two aspects namely execution speed and memory
usage efficiency. This study is motivated by the need to
evaluate and compare the performance of these two
approaches, particularly in terms of processing speed and
memory efficiency during data mapping in Flutter
application development. Furthermore, the implementation
of DTOs aligns with the principles of clean architecture,
which emphasizes the separation of business logic from
technical details, thereby maintaining the modularity and
scalability of the application. However, despite the critical
role of DTOs, there is limited research that systematically
compares the manual and generated approaches in the
context of Flutter performance. Therefore, this research is
expected to fill this gap.

http://jurnal. polibatam.ac.id/index.php/JAIC

mailto:chandro.pardede@del.ac.id
mailto:iss22001@students.del.ac.id
mailto:iss22001@students.del.ac.id
https://creativecommons.org/licenses/by-sa/4.0/

2913

e-ISSN: 2548-6861

While the manual approach allows for flexibility and full
control over object structures, it also comes with several
drawbacks. One of the main issues is the large amount of
boilerplate code and the potential for human error during the
coding process [5]. Manual coding is more prone to human
error compared to the generated DTO approach. This is
because, in the manual approach, developers have to
explicitly write each fromJson() and toJson() function. This
process heavily relies on the developer's accuracy in
handling various data types and changing object structures.
Any mistakes in writing the code, such as mismatched data
types or errors in attribute mapping, can lead to bugs or
logical errors in the application. On the other hand, generated
DTOs using libraries such as json_serializable, freezed, or
build runner can significantly reduce these burdens [6].
However, this generated approach often introduces added
complexity during build time, dependency on third-party
libraries, and reduced clarity for novice developers
unfamiliar with annotations and code generation.

As Flutter adoption grows across various industries, there
is a significant opportunity to explore and define best
practices in managing DTOs. This research aims to address
the need for a deeper understanding of how each DTO
approach performs in terms of processing speed and memory
usage during data mapping in Flutter applications.
Additionally, the study seeks to provide guidelines for
development teams in choosing the most suitable DTO
strategy based on the specific needs and context of their
projects.

Nevertheless, several challenges remain, such as the rapid
evolution of the ecosystem and its supporting libraries, as
well as the varying needs of different projects that may affect
the effectiveness of one approach over the other [7].
Furthermore, there are still very few systematic comparative
studies that evaluate the performance and development
efficiency between manual and generated DTO approaches.
This poses a risk to developers and project managers in
making informed technical decisions.

Based on the aforementioned background, this study is
essential to provide a comparative analysis of the impact of
using manual versus generated DTOs on runtime
performance and development efficiency in Flutter
applications. It is expected that this research will contribute
to the Flutter developer community in making optimal
technical decisions and promoting more efficient and
standardized application development practices.

II. METHOD

A. Research Approach

This study employs a quantitative experimental method
aimed at comparing the performance of two approaches to
implementing Data Transfer Objects (DTOs) in Flutter
applications: the manual approach and the generative

approach. The evaluation is conducted by measuring two key
metrics: execution time and memory usage during the
processes of JSON deserialization and serialization. Through
this approach, the researcher seeks to observe and
objectively analyze the measurement results based on
variations in data size and the DTO approach applied.

B. Dataset
TABLEI
DATA OBJECT CATEGORIES
Category Total attributes
Small 52
Medium 104
Large 156

The The dataset used in this study is a mock JSON API,
consisting of synthetic data artificially generated to represent
the patterns and distributions of real data without using the
actual data directly [8]. This data is presented in the JSON
object format with various attributes.

Each dataset category is determined based on the
complexity level of the number of attributes within a single
JSON object. The Small category consists of 52 attributes,
the Medium category has 104 attributes (double the Small
category), and the Large category includes 156 attributes
(double the Medium category). Thus, the dataset complexity
increases proportionally with a ratio of 1:2:3 for each
category.

Each JSON object contains various common data types in
programming, such as String, int, double, bool, DateTime,
List<T>, and Map<String, T>. This proportional increase in
the number of attributes allows for the evaluation of DTO
(Data Transfer Object) mapping performance, both manually
and generatively, enabling an analysis of data processing
efficiency from small to large scales.

C. DTO Implementation

Declare Attributes and

Constructor

MANUAL

Mapping fromdson()
Mapping toJson()

GENERATE

Manual or

Configuration buid
Generated? s
Run command: flutter
pub run build_runner Oine it il
build (g dar)

Ready to use

Figure 1. Workflow of generated and manual implementation

The implementation of Data Transfer Objects (DTOs) in
this study adopts two main approaches: the manual approach
and the generated (automatic) approach. These two methods

JAIC Vol. 9, No. 5, October 2025: 2912 —2919

JAIC

e-ISSN: 2548-6861

2914

are used to compare performance in terms of execution time
and code-writing efficiency during the serialization and
deserialization of objects. Figure 1 illustrates the
implementation workflow of each approach. The workflow
begins with the declaration of attributes and constructors,
which serve as the foundation for DTO formation in both
manual and automated approaches.

In the manual approach, object mapping is performed by
explicitly writing the fromJson() and toJson() functions.
Meanwhile, in the generated approach, the mapping process
is assisted by code generation libraries such as
json_serializable and build runner. Once the initial
configuration is completed, the command flutter pub run
build_runner build is executed to generate a file with the
extension *.g.dart, which contains the automatically
generated code for the serialization and deserialization
processes.

D. Testing Techniques

L

Cold Start Benchmark

oad JSON Data

Loop 100 times

Start Stopwatch
deserialization

serialization

Mapping DTO — JSON]
(toJson)
Stop Stopwatch

Calculate Duraticn
¥
Calculate Average
Results

Figure 2. Testing workflow

The testing in this study is conducted to measure the
performance of data mapping processes using both manual
and generative approaches to Data Transfer Objects (DTOs).
The evaluation focuses on two main aspects: execution time
and memory usage during the deserialization (fromJson) and
serialization (toJson) processes. One of the methods used to
measure performance in this study is benchmarking with a
stopwatch.

Benchmarking with a stopwatch is a performance
evaluation technique that utilizes a high-precision time-

measuring tool to record the execution duration of a code
snippet at a micro level [9]. In this case, the Stopwatch class
from the dart: core library is used. This class is designed to
measure time precisely in microseconds (us) to milliseconds
(ms). The stopwatch is initialized before the mapping
process begins and stopped immediately after the process
ends, allowing the total execution duration to be accurately
captured and compared between the two approaches.

1) Execution Speed Testing: The testing procedures
were carried out as follows:
e The test dataset in JSON format is first loaded
according to the predefined size categories: Small,
Medium, and Large.

e Aninitial execution (cold start) is performed to map
the JSON data to the DTO object and vice versa,
aiming to measure the initialization time before the
testing is repeated.

e The test is conducted over 100 iterations to obtain
average values. In each iteration, a stopwatch is
activated to begin measuring the duration of the
process. The JSON data is then mapped to the DTO
object using the fromJson function, and
subsequently, the DTO object is converted back to
JSON format using the toJson function. Once the
conversion is complete, the stopwatch is stopped to
record the time taken for that iteration.

e After all iterations are completed, the average
execution time is calculated for each approach
(manual and generated) across all dataset
categories.

e To ensure measurement stability, a 100-millisecond
delay is added at the end of each iteration to allow
the garbage collector to clean up temporary
memory allocations.

2) Memory Usage Testing: Memory measurement is
conducted using the Memory feature available in Flutter
DevTools. This tool is utilized to monitor and analyze
memory usage in detail during the serialization and
deserialization processes. The analysis is based on resource
usage snapshots taken after the entire testing sequence is
completed, providing a comprehensive view of memory
allocation efficiency for each approach [10]. These results
offer insights into the memory consumption of each mapping
approach (manual and generated), as well as their overall
impact on system efficiency.

E. Evaluation Metrics

1) Execution Time: This metric measures how fast the
serialization (converting objects to JSON) and
deserialization (converting JSON to objects) processes are
executed for each approach (manual vs. generated DTO).
The measurement is performed in microseconds (us) and

Comparative Study of Manual and Generated Data Transfer Object Implementation Performance

(Winfrey Nainggolan, Wilson Sihombing, Chandro Pardede)

USER
Typewritten text
2914

2915

e-ISSN: 2548-6861

calculated based on the average value from a number of test
iterations. Execution time reflects the duration required by
the system to run a program, including the processes of
fetching instructions and data from memory, as well as the
sequential execution of commands within the processor [11].
2) Memory Usage: This metric aims to observe
memory consumption during the data mapping process.
Measurements are conducted using the Memory feature
available in Flutter DevTools, which provides real-time
statistics on heap memory usage as well as memory
snapshots. This method allows researchers to monitor
memory allocation and deallocation during serialization and
deserialization processes. More than just statistical values,
memory usage serves as a crucial indicator that reflects the
health and performance of an application—especially in
complex scenarios where applications handle large volumes
of data intensively [12].

F. Testing Environment

To ensure that the testing results are fair, consistent, and
reproducible, all experiments were conducted in a controlled
hardware and software environment. This environment was
carefully designed to resemble real-world conditions in
which Flutter applications are typically used by end users.
Such a setup is crucial to accurately reflect the actual
performance of DTO mapping approaches, whether done
manually or through code generation.

The testing was carried out using a laptop with standard
specifications, as detailed in the following table:

TABLEII
DEVICE SPECIFICATIONS
Component Specification
Processor Intel(R) Core(TM) i5-10500H CPU
@ 2.50GHz (12 CPUs), ~2.5GHz
RAM 16384MB
Operating Windows 11 Home Single
System Language 64-bit (10.0, Build 22631)
Flutter SDK 3.32.2
Programming Dart 3.8.1
Language
Code Editor Android Studio Ladybug | 2024.2.1
Patch 2
Profiling Tool DevTools via Android Studio

The experiment was conducted using a laptop with an
Intel(R) Core(TM) i5-10500H CPU @ 2.50GHz (12 CPUs),
16 GB RAM, and Windows 11 Home Single Language 64-
bit (Build 22631) as the operating system. The development
environment utilized Flutter SDK version 3.32.2, Dart
programming language 3.8.1, and Android Studio Ladybug
(2024.2.1 Patch 2) as the main editor. To support
performance profiling, Flutter DevTools was used, while the
generated DTO implementation was built with the
json_serializable and build_runner libraries. Execution speed

was measured using the Stopwatch class from the dart:core
library, while memory usage was analyzed through the
Memory feature in DevTools.

III. RESULT AND DISCUSSION

A. Testing Results

The testing was conducted to evaluate and compare the
data parsing performance between two approaches to
implementing Data Transfer Objects (DTOs): the manual
implementation and the generated implementation using the
json_serializable library within the Flutter/Dart
environment. All tests were performed in accordance with
the environment and configurations described in Chapter 2,
utilizing the specified hardware and data sets.

1) DTO Parsing Speed: The first test was conducted
by measuring the parsing time of DTO objects—from JSON
format to Dart objects, and vice versa, from Dart objects to
JSON format. The testing process was repeated for 100
iterations for each method, and the parsing time results were
recorded in a .csv file format. This data was then used to
generate performance visualization graphs for the three data
size categories, which can be seen below.
Execution Time vs Iteration

1200 {

/

Duration (ps

]
il -
MQWWW%M\\/\@W&Y\I\ALM\\/I !J\

Figure 3. Manual parsing for small data

Execution Time vs Iteration
1000/ ‘

9001
800{
700{
500{
400/ /\N
300/
0 20 4 ! 80 100

60

Duration (ps)

° lterasi
Figure 4. Generated parsing for small data

From the two graphs in the small data category, Figure 3
and Figure 4, which compare execution time in
microseconds over 100 iterations, it is observed that Figure
3 (manual approach) demonstrates relatively stable
performance after a significant spike in execution time
during the first iteration, with most durations falling within
the 400 to 800 ps range. In contrast, Figure 4 (generated

JAIC Vol. 9, No. 5, October 2025: 2912 —2919

JAIC

e-ISSN: 2548-6861

2916

approach) shows a slightly lower average execution time but
with greater variation and several sharp spikes reaching up
to 900 ps, indicating higher instability compared to the
manual approach.

Execution Time vs Iteration

g

2000
1800
16001
7
1400
c
.9 1200
=]
©
5 1000
800
600
400{
0 20 40 |terasi 60 80 100
Figure 5. Manual parsing for medium data
Execution Time vs Iteration
f
2250 |
2000 ‘
1750 |
w
3 1500
=
O 01 |
= |
5 1000 \ 1 4
5wl L / I\
il W WA Al A,
500 !
[20 80 100

40 60

Iterasi
Figure 6. Generated parsing for medium data

From the two graphs in the medium data category, Figure
5 and Figure 6, which compare execution time in
microseconds over 100 iterations, a significant difference in
performance patterns can be observed. Figure 5 (manual
approach) shows a higher average execution time with
extremely wide variation, including several sharp spikes
reaching nearly 2000 ps, indicating instability and
inefficiency in the parsing process. In contrast, Figure 6
(generated approach) demonstrates much more stable
performance after an initial significant spike, with a lower
average execution time and most durations remaining below
1000 ps.

Execution Time vs Iteration

3000 |
2500 {

2000

Duration (us)

] ﬁ \
| ’I f‘
: \1\’ VW\AJ \fa\{j\M%AMMMW\/\MAA&JN

Iterasi

2
8
3

a8
g

Figure 7. Manual parsing for large data

Execution Time vs Iteration

i fil

40

14001

|
P

0

n

Durati
g

o
8
3

Iterasi

Figure 8. Generated parsing for large data

From the two graphs in the large data category—Figure 7
and Figure 8—which compare execution time in
microseconds over 100 iterations, a striking performance
difference is evident. Figure 7 (manual approach) shows a
significantly higher and volatile average execution time,
marked by extreme spikes exceeding 3500 ps. In contrast,
Figure 8 (generated approach) demonstrates much better and
more stable performance, with a lower average execution
time and less extreme duration variations, where the highest
peak only reaches around 1600 ps. In this large data set, the
average speed of the manual approach was compared with
the generated approach, resulting in a speed ratio of 1:1.147.
The interpretation of this parsing speed ratio of 1:1.147
indicates that the generated DTO approach can execute the
serialization and deserialization processes approximately
14.7% faster than the manual DTO. While this difference
may appear relatively small in numerical terms, its
significance largely depends on the context of the application
being developed. In applications with large data sets or high
workloads, the 14.7% difference can have a significant
impact on response time and operational efficiency.

Based on the comparison of all six graphs, the parsing
performance between the manual and generated methods
shows a notable difference, particularly at the medium and
large data scales. For small data, both methods demonstrate
relatively comparable performance, although the manual
method tends to be more stable. However, as data complexity
and size increase, the generated method exhibits a clear
advantage, with lower and more stable parsing times, while
the manual method experiences drastic execution time spikes
and high variability. This indicates that the generated method
is more efficient and reliable when handling large-scale data
parsing. While the performance difference is not significant
at a smaller scale, for medium to large-scale data processing
needs, the generated approach proves to be a more optimal
choice in terms of performance.

2) Average Parsing Speed: To provide a clearer
overview of the performance efficiency between the two
methods, the average parsing time over 100 iterations for
each data size category was calculated and visualized in the
form of a bar chart, as shown in the Figure 9.

Comparative Study of Manual and Generated Data Transfer Object Implementation Performance

(Winfrey Nainggolan, Wilson Sihombing, Chandro Pardede)

USER
Typewritten text
2916

2917

e-ISSN: 2548-6861

COMPARISON OF AVERAGE SPEED
OF MANUAL VS GENERATED
MAPPING

B Manual Generated

—

i, ~

716.28
1

MAPPING SPEED{WS)
184.67

SMALL MEDIUM

DATASIZE

LARGE

Figure 9. Comparison of average parsing speed

Based on the diagram, it can be seen that the average
parsing time for the generated DTO is consistently lower
than that of the manual DTO. For large-sized data, the
manual approach results in a parsing time of 793.1 ms, while
the generated approach results in 663.15 ms. For medium-
sized data, the manual approach results in 716.28 ms, while
the generated approach results in 659.37 ms. Meanwhile, for
small-sized data, the manual approach results in 484.67 ms,
and the generated approach results in 422.29 ms. The
difference in average parsing times becomes more
significant with larger data, indicating that the generated
DTO has better scalability.

3) Memory Usage: In addition to speed measurements,
memory usage was also tested after the parsing process was
completed. Memory usage was measured in kilobytes (KB)
using the DevTools feature available in the text editor used
during development. The results of this test are presented in
Figure 10.

COMPARISON OF MANUAL VS
GENERATED MEMORY MAPPING

H Manual Generated

1300

610.9

MEMORY USAGE (KB)
7

MEDIUM
DATASIZE

LARGE

Figure 10. Comparison of memory usage in data parsing

The test results show that memory usage in the manual
implementation tends to be higher and increases drastically
with larger data sizes. For large-sized data, the manual
approach results in a parsing time of 1300 ms, while the
generated approach results in 915.6 ms. For medium-sized
data, the manual approach results in 873.4 ms, while the

generated approach results in 610.9 ms. Meanwhile, for
small-sized data, the manual approach results in 484.67 ms,
while the generated approach results in 422.29 ms. On the
other hand, the generated DTO implementation shows better
memory efficiency with relatively lower increases.

Based on the analysis, it can be concluded that the memory
usage ratio between manual and generated parsing tends to
be consistent, around 1:1.42 (manual = 437.5 KB; generated
=306.3 KB), regardless of data size variations or the number
of iterations performed. Meanwhile, the parsing speed ratio
is around 1:1.147 (manual = 484.67 ms; generated = 422.29
ms).

B. Discussion

The test results indicate that both manual and generated
approaches in DTO implementation exhibit stable parsing
performance across 100 test iterations. This is supported by
findings stating that schema-based serializers consistently
offer better parsing performance and memory efficiency
compared to schema-less approaches such as manual JSON
parsing [13]. From the tests conducted, the generated
approach proved to be faster because the closure function
was called and reused more frequently than in the manual
approach. In the program code, the closure is created once at
the beginning and then reused whenever needed, resulting in
more efficient execution time. Although the generated DTO
approach has proven superior in terms of parsing time
efficiency and memory stability, there are several drawbacks
that need to be considered. First, the use of generated DTO
adds complexity to the build process because it heavily relies
on third-party libraries such as json_serializable and
build_runner. This dependency may cause compatibility
issues when Flutter or Dart undergo version updates,
requiring ongoing maintenance. Second, the code generation
process can increase build time, especially in large projects
with numerous data models, which can slow down the
development cycle. Third, this approach tends to limit the
flexibility of parsing logic, as annotations and code
generators only support standard attribute mapping patterns.
If developers need conditional data transformations, such as
converting specific values, the generated approach becomes
less optimal and often still requires additional manual code.
Additionally, for beginner developers, the use of annotations
and automatically generated files can create a steeper
learning curve, as the code structure is not entirely explicit
and can be difficult to understand without familiarity with
the build_runner mechanism. The performance fluctuations
observed during testing can be attributed to system
conditions that are not entirely controllable. In the context of
parallel and multithreaded programs, these irregularities may
be caused by various factors, such as load imbalance between
threads, task scheduling mechanisms by the operating
system, synchronization overhead, and contention for shared
resources [14]. These factors can lead to unpredictable

JAIC Vol. 9, No. 5, October 2025: 2912 —2919

JAIC

e-ISSN: 2548-6861

2918

execution time variations and contribute to performance
spikes during benchmarking processes. Although both
approaches demonstrate consistency, the generated DTO
approach yields a faster average parsing time compared to
the manual approach, especially as the data size increases.
This indicates that the generated approach has more scalable
characteristics and is better suited for applications with high
data loads.

The test data on average parsing time reinforces this
finding, where the generated DTO approach demonstrates
higher parsing efficiency across small, medium, and large
data scales. This efficiency becomes even more significant
with large-sized object data, indicating that the generated
approach not only reduces development workload by
eliminating boilerplate code but also proves to be more
robust in handling increasing data complexity. Therefore,
scalability becomes a key added value, especially for
applications that handle large volumes of data or operate in
real-time contexts.

In addition to speed, memory usage testing revealed that
the manual DTO approach tends to consume more memory,
especially at larger data scales. The memory usage ratio
between the manual and generated approaches reached
1:1.42, highlighting the generated approach’s advantage in
efficient memory management. This finding is particularly
important in the context of resource-constrained systems,
such as mobile applications that are sensitive to memory
consumption.

These findings indicate that using the json_serializable
library offers benefits not only in terms of maintainability
and development efficiency, but also in terms of technical
performance [15]. The generated DTO approach has proven
to deliver competitive if not superior parsing results,
particularly in memory efficiency and processing speed
when dealing with large-scale data. Therefore, this approach
is recommended for application development within the
Flutter/Dart ecosystem.

Nevertheless, each approach has its own strengths and
limitations. The generated approach excels in consistency,
parsing time efficiency, and memory usage. However, it has
limitations when special parsing handling is required,
particularly when such needs cannot be addressed using
standard annotations. For instance, when data transformation
is needed based on certain conditions, such as adjusting
attribute mapping depending on the value or data type
received, these cases are typically not fully supported by
standard annotations. In such scenarios, a manual approach
is necessary to provide more flexible and tailored handling.
On the other hand, the manual approach offers full flexibility
and control over the parsing process but requires more
maintenance effort and tends to be inefficient when data
structures change frequently.

Based on the overall results and analysis, the generated
DTO approach is recommended for most general use cases,

especially when parsing efficiency and memory management
are top priorities. However, the manual approach remains
relevant for scenarios involving complex and non-standard
parsing requirements, where custom parsing logic is
necessary.

IV. CONCLUSION

The generated DTO approach is highly recommended for
application development projects that involve numerous
features and modules, particularly when managed by a
multi-person development team. This method has been
shown to effectively reduce code duplication, minimize
human errors in attribute mapping, and simplify maintenance
as system complexity grows. It is especially suitable for
projects that demand high consistency in data transfer
structures.

Opting for the generated DTO approach is advantageous in
scenarios requiring technical efficiency and scalability,
making it ideal for applications with high data throughput.
Experimental results indicate that this approach outperforms
manual DTOs by approximately 14.7% in parsing speed and
offers better memory efficiency (=1:1.42 ratio compared to
manual), providing a significant benefit in repetitive and

real-time workloads.

Moreover, the generated approach reduces boilerplate code,
lowers the likelihood of human errors, shortens code review
cycles, and eases refactoring when data schemas evolve.
However, for projects requiring extensive flexibility in
conditional parsing logic or highly dynamic data structures,
the manual approach may still be preferable—though it
demands greater maintenance and carries a higher risk of

coding errors.

From a technical policy perspective, development
companies are advised to establish code generation standards
as part of their internal development guidelines. This
standardization not only supports the efficiency of the
development process but also facilitates module integration
across applications through uniform and automated DTO
formats.

Future research directions could focus on expanding
testing with more complex real-world datasets, comparing
various code generation libraries such as freezed,

Comparative Study of Manual and Generated Data Transfer Object Implementation Performance

(Winfrey Nainggolan, Wilson Sihombing, Chandro Pardede)

USER
Typewritten text
2918

2919

e-ISSN: 2548-6861

built_value, or Protobuf, and testing performance across
different platforms (Android, iOS, web, desktop) and device
classes. Additionally, future studies could introduce new
metrics such as energy consumption, build time, and
maintainability, accompanied by statistical analysis to test
the significance of the results. A hybrid approach combining
generated DTOs as the default with custom converters for
specific cases also presents an interesting area for
exploration to provide more comprehensive practical
guidelines for the Flutter developer community.

BIBLIOGRAPHY

[1] F. Mushtaq, F. Azam, and M. W. Anwar, “Performance Comparison
of Single Code Base Development Tools: Flutter, React Native, and
Xamarin,” Proc. - 2024 14th Int. Conf. Softw. Technol. Eng. ICSTE
2024, no. May 2025, pp- 17-23, 2024, doi:
10.1109/ICSTE63875.2024.00011.

[2] Fowler, M., Rice, D., Foemmel, M., Hieeatt, E., Mee, R., & Stafford,
R. (2002). Patterns of Enterprise Application Architecture.

[31 T. Greifenberg et al., “Integration of handwritten and generated
object-oriented code,” Commun. Comput. Inf. Sci., vol. 580, pp.
112-132, 2015, doi: 10.1007/978-3-319-27869-8 7.

[4] T. Stahl and M. Volter, Model-Driven Software. 2006.

[51 T.P.Programmer, What others in the trenches say about.

[6] E. Umuhoza, “Domain-specific modeling and code generation for
cross-platform multi-device mobile apps?,” CEUR Workshop Proc.,
vol. 1499, pp. 50-60, 2015.

[7] A. Fernandez-Llamazares, L. Diaz-Reviriego, A. C. Luz, M. Cabeza,
A. Pyhdld, and V. Reyes-Garcia, “Rapid ecosystem change
challenges the adaptive capacity of local environmental knowledge,”
Glob. Environ. Chang., vol. 31, pp. 272-284, 2015, doi:
10.1016/j.gloenvcha.2015.02.001.

[8] J. Jordon et al., “Synthetic Data -- what, why and how?,” no. May,
2022, doi: 10.48550/arXiv.2205.03257.

[91 H. Swoboda, “Microbenchmark,” Juv. Angiofibroma, no. 1976, pp.
3-9, 2017, doi: 10.1007/978-3-319-45343-9 1.

[10] M. Azis, A. Pinandito, and I. Maghfiroh, “Analisis Perbandingan
Penggunaan State Management pada Aplikasi Ditonton
menggunakan Framework Flutter,” J. Pengemb. Teknol. Inf. dan
Ilmu Komput., vol. 7, no. 1, pp. 148-153, 2023.

[11] Dewangga Andira Sulaeman, Ismah Nurul Sya’bani, M. Ashof Azria
Azka, and Didik Aribowo, “Ruang Lingkup Organisasi Dan
Arsitektur Komputer,” J. Elektron. dan Tek. Inform. Ter. JENTIK),
vol. 1, no. 4, pp. 164-177, 2023, doi: 10.59061/jentik.v1i4.519.

[12] M. Hort, M. Kechagia, F. Sarro, and M. Harman, “A Survey of
Performance Optimization for Mobile Applications,” IEEE Trans.
Softw. Eng., vol. 48, no. 8, pp. 2879-2904, 2022, doi:
10.1109/TSE.2021.3071193.

[13] J. C. Viotti and M. Kinderkhedia, “A Benchmark of JSON-
compatible Binary Serialization Specifications,” 2022, [Online].
Available: http:/arxiv.org/abs/2201.03051

[14] D. Kagaris, S. Dutta, and S. Eyerman, “Execution Time Estimation
of Multithreaded Programs with Critical Sections,” IEEE Trans.
Parallel Distrib. Syst., vol. 33, no. 10, pp. 2470-2481, 2022, doi:
10.1109/TPDS.2022.3143455.

[15] J. C. Viotti and M. Kinderkhedia, “A Survey of JSON-compatible
Binary Serialization Specifications,” 2022, [Online]. Available:
https://doi.org/10.48550/arXiv.2201.02089

JAIC Vol. 9, No. 5, October 2025: 2912 —2919

http://arxiv.org/abs/2201.03051

