

http://jurnal.polibatam.ac.id/index.php/JAIC

Comparative Study of Manual and Generated Data Transfer Object

Implementation Performance

Chandro Pardede1,2*, Wilson Sihombing1, Winfrey Nainggolan1
1 Faculty of Informatics and Electrical Engineering, Del Institute of Technology, Sitoluama, 22381, Indonesia

2

Article Info ABSTRACT

Article history:

Keyword:

Data Transfer Object,

Flutter,

json_serializable,

Parsing,

Performance.

This is an open access article under the CC–BY-SA license.

I. INTRODUCTION

The development of modern mobile applications

increasingly emphasizes efficiency and performance,

especially on platforms like Flutter, which offers a cross-

platform approach with performance close to native [1]. One

common practice in Flutter development is the use of Data

Transfer Objects (DTOs) to separate the data representation

from the application’s logic entities. DTOs act as a bridge

between the data received from the server and the

components within the application [2]. In practice, DTOs can

be created manually or through code generation using

libraries or annotations [3]. Each of these approaches has its

own strengths in terms of data structuring, code clarity, and

full control over the JSON format [4]. The novelty of this

research lies in its specific comparative focus on the

implementation of manual and generated Data Transfer

Objects (DTOs) in Flutter application development,

emphasizing runtime performance and memory usage

efficiency. This differentiates it from previous studies that

generally discuss Flutter optimization in a broader sense. The

aim of this research is to evaluate the performance

comparison between the two approaches, with the main

focus on two aspects namely execution speed and memory

usage efficiency. This study is motivated by the need to

evaluate and compare the performance of these two

approaches, particularly in terms of processing speed and

memory efficiency during data mapping in Flutter

application development. Furthermore, the implementation

of DTOs aligns with the principles of clean architecture,

which emphasizes the separation of business logic from

technical details, thereby maintaining the modularity and

scalability of the application. However, despite the critical

role of DTOs, there is limited research that systematically

compares the manual and generated approaches in the

context of Flutter performance. Therefore, this research is

expected to fill this gap.

Journal of Applied Informatics and Computing (JAIC)

Vol.9, No.5, October 2025, pp. 2912~2919

e-ISSN: 2548-6861 2912

Received 2025-08-17

Revised 2025-09-15

Accepted 2025-10-18

 The Data Transfer Object (DTO) plays a crucial role in Flutter application

development, particularly in the process of data serialization and deserialization.

This study compares two DTO implementation approaches namely manual and

generated with a focus on execution speed and memory usage efficiency. Testing

was conducted at three data complexity levels (Small, Medium, Large) over 100

iterations using Flutter DevTools. The results show that the generated approach

(using libraries like json_serializable) outperforms the manual approach in parsing

speed, with a ratio of 1:1.147, and memory efficiency, with a ratio of 1:1.42. While

the manual approach offers more flexibility in handling conditional parsing logic, it

is more error-prone and less efficient when processing large datasets. In contrast, the

generated approach proves faster, more scalable, and reduces the potential for human

errors, making it the optimal choice for projects requiring technical efficiency and

rapid development. This study recommends using generated DTOs for applications

with large data sets and high complexity, while manual DTOs are better suited for

dynamic parsing needs.

Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Ishikawa, 920-1192, Japan

chandro.pardede@del.ac.id 1, iss22011@students.del.ac.id2, iss22001@students.del.ac.id3

mailto:chandro.pardede@del.ac.id
mailto:iss22001@students.del.ac.id
mailto:iss22001@students.del.ac.id
https://creativecommons.org/licenses/by-sa/4.0/

While the manual approach allows for flexibility and full

control over object structures, it also comes with several

drawbacks. One of the main issues is the large amount of

boilerplate code and the potential for human error during the

coding process [5]. Manual coding is more prone to human

error compared to the generated DTO approach. This is

because, in the manual approach, developers have to

explicitly write each fromJson() and toJson() function. This

process heavily relies on the developer's accuracy in

handling various data types and changing object structures.

Any mistakes in writing the code, such as mismatched data

types or errors in attribute mapping, can lead to bugs or

logical errors in the application. On the other hand, generated

DTOs using libraries such as json_serializable, freezed, or

build_runner can significantly reduce these burdens [6].

However, this generated approach often introduces added

complexity during build time, dependency on third-party

libraries, and reduced clarity for novice developers

unfamiliar with annotations and code generation.

As Flutter adoption grows across various industries, there

is a significant opportunity to explore and define best

practices in managing DTOs. This research aims to address

the need for a deeper understanding of how each DTO

approach performs in terms of processing speed and memory

usage during data mapping in Flutter applications.

Additionally, the study seeks to provide guidelines for

development teams in choosing the most suitable DTO

strategy based on the specific needs and context of their

projects.

Nevertheless, several challenges remain, such as the rapid

evolution of the ecosystem and its supporting libraries, as

well as the varying needs of different projects that may affect

the effectiveness of one approach over the other [7].

Furthermore, there are still very few systematic comparative

studies that evaluate the performance and development

efficiency between manual and generated DTO approaches.

This poses a risk to developers and project managers in

making informed technical decisions.

Based on the aforementioned background, this study is

essential to provide a comparative analysis of the impact of

using manual versus generated DTOs on runtime

performance and development efficiency in Flutter

applications. It is expected that this research will contribute

to the Flutter developer community in making optimal

technical decisions and promoting more efficient and

standardized application development practices.

II. METHOD

A. Research Approach

This study employs a quantitative experimental method

aimed at comparing the performance of two approaches to

implementing Data Transfer Objects (DTOs) in Flutter

applications: the manual approach and the generative

approach. The evaluation is conducted by measuring two key

metrics: execution time and memory usage during the

processes of JSON deserialization and serialization. Through

this approach, the researcher seeks to observe and

objectively analyze the measurement results based on

variations in data size and the DTO approach applied.

B. Dataset

TABLE I

DATA OBJECT CATEGORIES

Category Total attributes

Small 52

Medium 104

Large 156

The The dataset used in this study is a mock JSON API,

consisting of synthetic data artificially generated to represent

the patterns and distributions of real data without using the

actual data directly [8]. This data is presented in the JSON

object format with various attributes.

Each dataset category is determined based on the

complexity level of the number of attributes within a single

JSON object. The Small category consists of 52 attributes,

the Medium category has 104 attributes (double the Small

category), and the Large category includes 156 attributes

(double the Medium category). Thus, the dataset complexity

increases proportionally with a ratio of 1:2:3 for each

category.

Each JSON object contains various common data types in

programming, such as String, int, double, bool, DateTime,

List<T>, and Map<String, T>. This proportional increase in

the number of attributes allows for the evaluation of DTO

(Data Transfer Object) mapping performance, both manually

and generatively, enabling an analysis of data processing

efficiency from small to large scales.

C. DTO Implementation

Figure 1. Workflow of generated and manual implementation

The implementation of Data Transfer Objects (DTOs) in

this study adopts two main approaches: the manual approach

and the generated (automatic) approach. These two methods

2913

 e-ISSN: 2548-6861

JAIC Vol. 9, No. 5, October 2025: 2912 – 2919

Comparative Study of Manual and Generated Data Transfer Object Implementation Performance

(Winfrey Nainggolan, Wilson Sihombing, Chandro Pardede)

are used to compare performance in terms of execution time

and code-writing efficiency during the serialization and

deserialization of objects. Figure 1 illustrates the

implementation workflow of each approach. The workflow

begins with the declaration of attributes and constructors,

which serve as the foundation for DTO formation in both

manual and automated approaches.

In the manual approach, object mapping is performed by

explicitly writing the fromJson() and toJson() functions.

Meanwhile, in the generated approach, the mapping process

is assisted by code generation libraries such as

json_serializable and build_runner. Once the initial

configuration is completed, the command flutter pub run

build_runner build is executed to generate a file with the

extension *.g.dart, which contains the automatically

generated code for the serialization and deserialization

processes.

D. Testing Techniques

Figure 2. Testing workflow

The testing in this study is conducted to measure the

performance of data mapping processes using both manual

and generative approaches to Data Transfer Objects (DTOs).

The evaluation focuses on two main aspects: execution time

and memory usage during the deserialization (fromJson) and

serialization (toJson) processes. One of the methods used to

measure performance in this study is benchmarking with a

stopwatch.

Benchmarking with a stopwatch is a performance

evaluation technique that utilizes a high-precision time-

measuring tool to record the execution duration of a code

snippet at a micro level [9]. In this case, the Stopwatch class

from the dart: core library is used. This class is designed to

measure time precisely in microseconds (μs) to milliseconds

(ms). The stopwatch is initialized before the mapping

process begins and stopped immediately after the process

ends, allowing the total execution duration to be accurately

captured and compared between the two approaches.

1) Execution Speed Testing: The testing procedures

were carried out as follows:

● The test dataset in JSON format is first loaded

according to the predefined size categories: Small,

Medium, and Large.

● An initial execution (cold start) is performed to map

the JSON data to the DTO object and vice versa,

aiming to measure the initialization time before the

testing is repeated.

● The test is conducted over 100 iterations to obtain

average values. In each iteration, a stopwatch is

activated to begin measuring the duration of the

process. The JSON data is then mapped to the DTO

object using the fromJson function, and

subsequently, the DTO object is converted back to

JSON format using the toJson function. Once the

conversion is complete, the stopwatch is stopped to

record the time taken for that iteration.

● After all iterations are completed, the average

execution time is calculated for each approach

(manual and generated) across all dataset

categories.

● To ensure measurement stability, a 100-millisecond

delay is added at the end of each iteration to allow

the garbage collector to clean up temporary

memory allocations.

2) Memory Usage Testing: Memory measurement is

conducted using the Memory feature available in Flutter

DevTools. This tool is utilized to monitor and analyze

memory usage in detail during the serialization and

deserialization processes. The analysis is based on resource

usage snapshots taken after the entire testing sequence is

completed, providing a comprehensive view of memory

allocation efficiency for each approach [10]. These results

offer insights into the memory consumption of each mapping

approach (manual and generated), as well as their overall

impact on system efficiency.

E. Evaluation Metrics

1) Execution Time: This metric measures how fast the

serialization (converting objects to JSON) and

deserialization (converting JSON to objects) processes are

executed for each approach (manual vs. generated DTO).

The measurement is performed in microseconds (μs) and

JAIC e-ISSN: 2548-6861

USER
Typewritten text
2914

calculated based on the average value from a number of test

iterations. Execution time reflects the duration required by

the system to run a program, including the processes of

fetching instructions and data from memory, as well as the

sequential execution of commands within the processor [11].

2) Memory Usage: This metric aims to observe

memory consumption during the data mapping process.

Measurements are conducted using the Memory feature

available in Flutter DevTools, which provides real-time

statistics on heap memory usage as well as memory

snapshots. This method allows researchers to monitor

memory allocation and deallocation during serialization and

deserialization processes. More than just statistical values,

memory usage serves as a crucial indicator that reflects the

health and performance of an application—especially in

complex scenarios where applications handle large volumes

of data intensively [12].

F. Testing Environment

To ensure that the testing results are fair, consistent, and

reproducible, all experiments were conducted in a controlled

hardware and software environment. This environment was

carefully designed to resemble real-world conditions in

which Flutter applications are typically used by end users.

Such a setup is crucial to accurately reflect the actual

performance of DTO mapping approaches, whether done

manually or through code generation.

The testing was carried out using a laptop with standard

specifications, as detailed in the following table:

TABLE II

DEVICE SPECIFICATIONS

Component Specification

Processor Intel(R) Core(TM) i5-10500H CPU

@ 2.50GHz (12 CPUs), ~2.5GHz

RAM 16384MB

Operating

System

Windows 11 Home Single

Language 64-bit (10.0, Build 22631)

Flutter SDK 3.32.2

Programming

Language

Dart 3.8.1

Code Editor Android Studio Ladybug | 2024.2.1

Patch 2

Profiling Tool DevTools via Android Studio

 The experiment was conducted using a laptop with an

Intel(R) Core(TM) i5-10500H CPU @ 2.50GHz (12 CPUs),

16 GB RAM, and Windows 11 Home Single Language 64-

bit (Build 22631) as the operating system. The development

environment utilized Flutter SDK version 3.32.2, Dart

programming language 3.8.1, and Android Studio Ladybug

(2024.2.1 Patch 2) as the main editor. To support

performance profiling, Flutter DevTools was used, while the

generated DTO implementation was built with the

json_serializable and build_runner libraries. Execution speed

was measured using the Stopwatch class from the dart:core

library, while memory usage was analyzed through the

Memory feature in DevTools.

III. RESULT AND DISCUSSION

A. Testing Results

The testing was conducted to evaluate and compare the

data parsing performance between two approaches to

implementing Data Transfer Objects (DTOs): the manual

implementation and the generated implementation using the

json_serializable library within the Flutter/Dart

environment. All tests were performed in accordance with

the environment and configurations described in Chapter 2,

utilizing the specified hardware and data sets.

1) DTO Parsing Speed: The first test was conducted

by measuring the parsing time of DTO objects—from JSON

format to Dart objects, and vice versa, from Dart objects to

JSON format. The testing process was repeated for 100

iterations for each method, and the parsing time results were

recorded in a .csv file format. This data was then used to

generate performance visualization graphs for the three data

size categories, which can be seen below.

Figure 3. Manual parsing for small data

Figure 4. Generated parsing for small data

From the two graphs in the small data category, Figure 3

and Figure 4, which compare execution time in

microseconds over 100 iterations, it is observed that Figure

3 (manual approach) demonstrates relatively stable

performance after a significant spike in execution time

during the first iteration, with most durations falling within

the 400 to 800 μs range. In contrast, Figure 4 (generated

2915

 e-ISSN: 2548-6861

JAIC Vol. 9, No. 5, October 2025: 2912 – 2919

Comparative Study of Manual and Generated Data Transfer Object Implementation Performance

(Winfrey Nainggolan, Wilson Sihombing, Chandro Pardede)

approach) shows a slightly lower average execution time but

with greater variation and several sharp spikes reaching up

to 900 μs, indicating higher instability compared to the

manual approach.

Figure 5. Manual parsing for medium data

Figure 6. Generated parsing for medium data

From the two graphs in the medium data category, Figure

5 and Figure 6, which compare execution time in

microseconds over 100 iterations, a significant difference in

performance patterns can be observed. Figure 5 (manual

approach) shows a higher average execution time with

extremely wide variation, including several sharp spikes

reaching nearly 2000 μs, indicating instability and

inefficiency in the parsing process. In contrast, Figure 6

(generated approach) demonstrates much more stable

performance after an initial significant spike, with a lower

average execution time and most durations remaining below

1000 μs.

Figure 7. Manual parsing for large data

Figure 8. Generated parsing for large data

From the two graphs in the large data category—Figure 7

and Figure 8—which compare execution time in

microseconds over 100 iterations, a striking performance

difference is evident. Figure 7 (manual approach) shows a

significantly higher and volatile average execution time,

marked by extreme spikes exceeding 3500 μs. In contrast,

Figure 8 (generated approach) demonstrates much better and

more stable performance, with a lower average execution

time and less extreme duration variations, where the highest

peak only reaches around 1600 μs. In this large data set, the

average speed of the manual approach was compared with

the generated approach, resulting in a speed ratio of 1:1.147.

The interpretation of this parsing speed ratio of 1:1.147

indicates that the generated DTO approach can execute the

serialization and deserialization processes approximately

14.7% faster than the manual DTO. While this difference

may appear relatively small in numerical terms, its

significance largely depends on the context of the application

being developed. In applications with large data sets or high

workloads, the 14.7% difference can have a significant

impact on response time and operational efficiency.

Based on the comparison of all six graphs, the parsing

performance between the manual and generated methods

shows a notable difference, particularly at the medium and

large data scales. For small data, both methods demonstrate

relatively comparable performance, although the manual

method tends to be more stable. However, as data complexity

and size increase, the generated method exhibits a clear

advantage, with lower and more stable parsing times, while

the manual method experiences drastic execution time spikes

and high variability. This indicates that the generated method

is more efficient and reliable when handling large-scale data

parsing. While the performance difference is not significant

at a smaller scale, for medium to large-scale data processing

needs, the generated approach proves to be a more optimal

choice in terms of performance.

2) Average Parsing Speed: To provide a clearer

overview of the performance efficiency between the two

methods, the average parsing time over 100 iterations for

each data size category was calculated and visualized in the

form of a bar chart, as shown in the Figure 9.

JAIC e-ISSN: 2548-6861

USER
Typewritten text
2916

Figure 9. Comparison of average parsing speed

Based on the diagram, it can be seen that the average

parsing time for the generated DTO is consistently lower

than that of the manual DTO. For large-sized data, the

manual approach results in a parsing time of 793.1 ms, while

the generated approach results in 663.15 ms. For medium-

sized data, the manual approach results in 716.28 ms, while

the generated approach results in 659.37 ms. Meanwhile, for

small-sized data, the manual approach results in 484.67 ms,

and the generated approach results in 422.29 ms. The

difference in average parsing times becomes more

significant with larger data, indicating that the generated

DTO has better scalability.

3) Memory Usage: In addition to speed measurements,

memory usage was also tested after the parsing process was

completed. Memory usage was measured in kilobytes (KB)

using the DevTools feature available in the text editor used

during development. The results of this test are presented in

Figure 10.

Figure 10. Comparison of memory usage in data parsing

The test results show that memory usage in the manual

implementation tends to be higher and increases drastically

with larger data sizes. For large-sized data, the manual

approach results in a parsing time of 1300 ms, while the

generated approach results in 915.6 ms. For medium-sized

data, the manual approach results in 873.4 ms, while the

generated approach results in 610.9 ms. Meanwhile, for

small-sized data, the manual approach results in 484.67 ms,

while the generated approach results in 422.29 ms. On the

other hand, the generated DTO implementation shows better

memory efficiency with relatively lower increases.

Based on the analysis, it can be concluded that the memory

usage ratio between manual and generated parsing tends to

be consistent, around 1:1.42 (manual = 437.5 KB; generated

= 306.3 KB), regardless of data size variations or the number

of iterations performed. Meanwhile, the parsing speed ratio

is around 1:1.147 (manual = 484.67 ms; generated = 422.29

ms).

B. Discussion

The test results indicate that both manual and generated

approaches in DTO implementation exhibit stable parsing

performance across 100 test iterations. This is supported by

findings stating that schema-based serializers consistently

offer better parsing performance and memory efficiency

compared to schema-less approaches such as manual JSON

parsing [13]. From the tests conducted, the generated

approach proved to be faster because the closure function

was called and reused more frequently than in the manual

approach. In the program code, the closure is created once at

the beginning and then reused whenever needed, resulting in

more efficient execution time. Although the generated DTO

approach has proven superior in terms of parsing time

efficiency and memory stability, there are several drawbacks

that need to be considered. First, the use of generated DTO

adds complexity to the build process because it heavily relies

on third-party libraries such as json_serializable and

build_runner. This dependency may cause compatibility

issues when Flutter or Dart undergo version updates,

requiring ongoing maintenance. Second, the code generation

process can increase build time, especially in large projects

with numerous data models, which can slow down the

development cycle. Third, this approach tends to limit the

flexibility of parsing logic, as annotations and code

generators only support standard attribute mapping patterns.

If developers need conditional data transformations, such as

converting specific values, the generated approach becomes

less optimal and often still requires additional manual code.

Additionally, for beginner developers, the use of annotations

and automatically generated files can create a steeper

learning curve, as the code structure is not entirely explicit

and can be difficult to understand without familiarity with

the build_runner mechanism. The performance fluctuations

observed during testing can be attributed to system

conditions that are not entirely controllable. In the context of

parallel and multithreaded programs, these irregularities may

be caused by various factors, such as load imbalance between

threads, task scheduling mechanisms by the operating

system, synchronization overhead, and contention for shared

resources [14]. These factors can lead to unpredictable

2917

 e-ISSN: 2548-6861

JAIC Vol. 9, No. 5, October 2025: 2912 – 2919

Comparative Study of Manual and Generated Data Transfer Object Implementation Performance

(Winfrey Nainggolan, Wilson Sihombing, Chandro Pardede)

execution time variations and contribute to performance

spikes during benchmarking processes. Although both

approaches demonstrate consistency, the generated DTO

approach yields a faster average parsing time compared to

the manual approach, especially as the data size increases.

This indicates that the generated approach has more scalable

characteristics and is better suited for applications with high

data loads.

The test data on average parsing time reinforces this

finding, where the generated DTO approach demonstrates

higher parsing efficiency across small, medium, and large

data scales. This efficiency becomes even more significant

with large-sized object data, indicating that the generated

approach not only reduces development workload by

eliminating boilerplate code but also proves to be more

robust in handling increasing data complexity. Therefore,

scalability becomes a key added value, especially for

applications that handle large volumes of data or operate in

real-time contexts.

In addition to speed, memory usage testing revealed that

the manual DTO approach tends to consume more memory,

especially at larger data scales. The memory usage ratio

between the manual and generated approaches reached

1:1.42, highlighting the generated approach’s advantage in

efficient memory management. This finding is particularly

important in the context of resource-constrained systems,

such as mobile applications that are sensitive to memory

consumption.

These findings indicate that using the json_serializable

library offers benefits not only in terms of maintainability

and development efficiency, but also in terms of technical

performance [15]. The generated DTO approach has proven

to deliver competitive if not superior parsing results,

particularly in memory efficiency and processing speed

when dealing with large-scale data. Therefore, this approach

is recommended for application development within the

Flutter/Dart ecosystem.

Nevertheless, each approach has its own strengths and

limitations. The generated approach excels in consistency,

parsing time efficiency, and memory usage. However, it has

limitations when special parsing handling is required,

particularly when such needs cannot be addressed using

standard annotations. For instance, when data transformation

is needed based on certain conditions, such as adjusting

attribute mapping depending on the value or data type

received, these cases are typically not fully supported by

standard annotations. In such scenarios, a manual approach

is necessary to provide more flexible and tailored handling.

On the other hand, the manual approach offers full flexibility

and control over the parsing process but requires more

maintenance effort and tends to be inefficient when data

structures change frequently.

Based on the overall results and analysis, the generated

DTO approach is recommended for most general use cases,

especially when parsing efficiency and memory management

are top priorities. However, the manual approach remains

relevant for scenarios involving complex and non-standard

parsing requirements, where custom parsing logic is

necessary.

IV. CONCLUSION

From a technical policy perspective, development

companies are advised to establish code generation standards

as part of their internal development guidelines. This

standardization not only supports the efficiency of the

development process but also facilitates module integration

across applications through uniform and automated DTO

formats.

Future research directions could focus on expanding

testing with more complex real-world datasets, comparing

various code generation libraries such as freezed,

The generated DTO approach is highly recommended for
application development projects that involve numerous
features and modules, particularly when managed by a
multi-person development team. This method has been
shown to effectively reduce code duplication, minimize
human errors in attribute mapping, and simplify maintenance
 as system complexity grows. It is especially suitable for
projects that demand high consistency in data transfer
structures.

Opting for the generated DTO approach is advantageous in
scenarios requiring technical efficiency and scalability,
making it ideal for applications with high data throughput.
Experimental results indicate that this approach outperforms
manual DTOs by approximately 14.7% in parsing speed and
offers better memory efficiency (≈1:1.42 ratio compared to
manual), providing a significant benefit in repetitive and
real-time workloads.

Moreover, the generated approach reduces boilerplate code,
lowers the likelihood of human errors, shortens code review
cycles, and eases refactoring when data schemas evolve.
However, for projects requiring extensive flexibility in
conditional parsing logic or highly dynamic data structures,
the manual approach may still be preferable—though it
demands greater maintenance and carries a higher risk of
coding errors.

JAIC e-ISSN: 2548-6861

USER
Typewritten text
2918

built_value, or Protobuf, and testing performance across

different platforms (Android, iOS, web, desktop) and device

classes. Additionally, future studies could introduce new

metrics such as energy consumption, build time, and

maintainability, accompanied by statistical analysis to test

the significance of the results. A hybrid approach combining

generated DTOs as the default with custom converters for

specific cases also presents an interesting area for

exploration to provide more comprehensive practical

guidelines for the Flutter developer community.

BIBLIOGRAPHY

10.1109/ICSTE63875.2024.00011.
[2] Fowler, M., Rice, D., Foemmel, M., Hieeatt, E., Mee, R., & Stafford,

R. (2002). Patterns of Enterprise Application Architecture.
[3] T. Greifenberg et al., “Integration of handwritten and generated

object-oriented code,” Commun. Comput. Inf. Sci., vol. 580, pp.

112–132, 2015, doi: 10.1007/978-3-319-27869-8_7.
[4] T. Stahl and M. Völter, Model-Driven Software. 2006.
[5] T. P. Programmer, What others in the trenches say about.
[6] E. Umuhoza, “Domain-specific modeling and code generation for

cross-platform multi-device mobile apps?,” CEUR Workshop Proc.,
vol. 1499, pp. 50–60, 2015.

[7] Á. Fernández-Llamazares, I. Díaz-Reviriego, A. C. Luz, M. Cabeza,

A. Pyhälä, and V. Reyes-García, “Rapid ecosystem change
challenges the adaptive capacity of local environmental knowledge,”

Glob. Environ. Chang., vol. 31, pp. 272–284, 2015, doi:

10.1016/j.gloenvcha.2015.02.001.
[8] J. Jordon et al., “Synthetic Data -- what, why and how?,” no. May,

2022, doi: 10.48550/arXiv.2205.03257.
[9] H. Swoboda, “Microbenchmark,” Juv. Angiofibroma, no. 1976, pp.

3–9, 2017, doi: 10.1007/978-3-319-45343-9_1.
[10] M. Azis, A. Pinandito, and I. Maghfiroh, “Analisis Perbandingan

Penggunaan State Management pada Aplikasi Ditonton
menggunakan Framework Flutter,” J. Pengemb. Teknol. Inf. dan

Ilmu Komput., vol. 7, no. 1, pp. 148–153, 2023.
[11] Dewangga Andira Sulaeman, Ismah Nurul Sya’bani, M. Ashof Azria

Azka, and Didik Aribowo, “Ruang Lingkup Organisasi Dan

Arsitektur Komputer,” J. Elektron. dan Tek. Inform. Ter. JENTIK),

vol. 1, no. 4, pp. 164–177, 2023, doi: 10.59061/jentik.v1i4.519.
[12] M. Hort, M. Kechagia, F. Sarro, and M. Harman, “A Survey of

Performance Optimization for Mobile Applications,” IEEE Trans.
Softw. Eng., vol. 48, no. 8, pp. 2879–2904, 2022, doi:

10.1109/TSE.2021.3071193.
[13] J. C. Viotti and M. Kinderkhedia, “A Benchmark of JSON-

compatible Binary Serialization Specifications,” 2022, [Online].

Available: http://arxiv.org/abs/2201.03051
[14] D. Kagaris, S. Dutta, and S. Eyerman, “Execution Time Estimation

of Multithreaded Programs with Critical Sections,” IEEE Trans.

Parallel Distrib. Syst., vol. 33, no. 10, pp. 2470–2481, 2022, doi:

10.1109/TPDS.2022.3143455.
[15] J. C. Viotti and M. Kinderkhedia, “A Survey of JSON-compatible

Binary Serialization Specifications,” 2022, [Online]. Available:

https://doi.org/10.48550/arXiv.2201.02089

2919

 e-ISSN: 2548-6861

JAIC Vol. 9, No. 5, October 2025: 2912 – 2919

[1] F. Mushtaq, F. Azam, and M. W. Anwar, “Performance Comparison

of Single Code Base Development Tools: Flutter, React Native, and
Xamarin,” Proc. - 2024 14th Int. Conf. Softw. Technol. Eng. ICSTE

2024, no. May 2025, pp. 17–23, 2024, doi:

http://arxiv.org/abs/2201.03051

