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Bitcoin, a highly volatile and decentralized digital asset, presents considerable
challenges for accurate price forecasting. This study proposes an applied data science
framework that compares traditional statistical approaches with modern Artificial
Intelligence (Al)-based models to predict Bitcoin’s daily closing price. Using BTC-
USD historical data from January 2020 to December 2024, we converted prices into
Indonesian Rupiah (IDR) to increase local relevance. Our forecasting horizon is 30
days, based on a 60-day lookback window. We evaluate six models: Linear
Regression, ARIMA, and Prophet as traditional techniques, alongside Random
Forest, XGBoost, and Long Short-Term Memory (LSTM) networks as Al
approaches. All models were trained using lag-based or sequence-based time series
features and evaluated using MAE, RMSE, R?, MAPE, and SMAPE. Results show
that Al models, particularly LSTM and XGBoost, offer better performance in
capturing short-term non-linear dynamics compared to traditional models. LSTM
provides high accuracy, though with greater computational demand, while XGBoost
strikes a balance between speed and precision. Prophet and ARIMA remain effective
for quick and interpretable forecasts but struggle with abrupt trend shift common in
cryptocurrency markets. In addition to performance metrics, we include a robustness
analysis based on median absolute error and outlier detection to assess model
stability under extreme variations. Visual analytics—including forecast curves, error
distributions, and uncertainty bounds—help interpret and communicate model
behavior. This comprehensive evaluation offers practical insights for investors,
analysts, and fintech practitioners, and the pipeline can be extended to other volatile
assets

This is an open access article under the CC—BY-SA license.

I. INTRODUCTION

The quick rise of digital banking has elevated bitcoin to the
status of one of the most influential and volatile assets in
today's global economy. precisely an autonomous digital
currency with no oversight, Bitcoin is significantly affected
by market sentiment, international occurrences, regulations,
and technological disruptions. Due to these features,
predicting the price regarding bitcoin is an essential but
difficult issue for researchers, financiers, and regulators [1]
(2] [3].

Throughout the preceding era, several studies have made
efforts to model Bitcoin fluctuations in prices utilizing both

traditional time series approaches and artificial intelligence
(AI) techniques. Traditional models, especially linear
regression, autoregressive integrated moving average
(ARIMA), and prophet, are straightforward and effortless to
comprehend [4] [5][6]. Linear Regression, for instance,
reveals an explicit association between lagged attributes and
future prices [7][8], whereas ARIMA is a well-known
statistical method for modelling autocorrelated and steady
data [9]. Prophet, developed through Facebook, optimizes
time series forecasting by handling variability and missing
data, making it excellent for business and finance applications
[6]. Nevertheless, these classical models regularly manage to
accurately represent the non-linear and chaotic behaviour of
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Bitcoin's price, particularly following high-volatility events.
As a result, the research has moved toward Al-based
techniques like Random Forest, XGBoost, and Long Short-
Term Memory (LSTM) networks. Random Forest [10] [11]
and XGBoost [12] [13] are tree-based ensemble algorithms
that can reliably forecast and robustly represent intricate
feature interpersonal interactions [1], [14][15]. LSTM, a deep
learning model designed for sequential data, exhibited
exceptional results in capturing temporal dependencies and
long-term trends in financial time series [16][17].

A few investigations have methodically evaluated both
families of models within an identical, verifiable data science
pipeline, and while individual studies have demonstrated that
Al models often outperform traditional ones under specific
circumstances, comprehensive comparisons remain limited.
In this study, we advance the literature by introducing a
hybrid forecasting framework, where “hybrid” denotes the
integration of traditional statistical approaches and Al-based
methods into a single, unified pipeline. This framework not
only allows direct comparison between paradigms but also
leverages their complementary strengths, offering a more
holistic view of forecasting performance. Additionally, much
of the current research merely targets prediction accuracy,
omitting model robustness, interpretability, and inter-model
analysis—all of which are essential for practical application.
[21[181[19][20].

The main advantage of conducting research on Bitcoin
price prediction is being able to assist in determining actions
in the midst of uncertainty. Detailed projections can influence
trading tactics, reduce risk, along with enhance financial
planning for investors [21][22]. Additionally, prediction
models can be deployed by regulatory organizations and
governments for maintaining their sights on systemic
potential risks in cryptocurrency markets. But the field also
has significant obstacles to overcome. Due to Bitcoin is
vulnerable to abrupt external shocks, consisting of regulatory
announcements or geopolitical events, it is difficult for any
model to consistently achieve long-term accuracy [23][24].
Moreover, regardless of whether Al models are strong, they
are frequently seen as "black boxes" which require to be
thoroughly evaluated for interpretability, overfitting, and
fairness [25][26].

A hybrid forecasting conduct that combines traditional
statistical and artificial intelligence (Al)-based models in a
structured data science pathway is recommended in the
current research to overcome these deficiencies. The three
major advantages of this research consider are outlined as
follows: (1) it presents an equitable assessment of numerous
models under comparable conditions; (2) its improvements
intermodel interpretability and robustness beyond traditional
metrics; and (3) it assembles the whole process in a data
science framework which can be modular and extensible. This
makes the mechanism verifiable or adjustable to other volatile
assets like Ethereum, oil prices, or stock indexes by other
professionals and academics [27].

The research's projected result is an in-depth evaluation of
Al and traditional models for Bitcoin forecasting, as well as
information on  which approaches best balance
interpretability, accuracy, perseverance, and computational
efficiency. The main objectives of this project are to
contribute a reusable forecasting architecture to the financial
data science ecosystem and a data-driven framework for
decision-making support in volatile financial scenarios. To
enhance their practical relevance, the projections are offered
in Indonesian Rupiah (IDR). While the USD-IDR conversion
is a linear transformation that has no influence on model
performance, it presents the results in the local financial
context, where Rupiah exchange-rate volatility provides
interpretive value for Indonesian investors and policymakers.

II. METHODS

The procedure is divided into numerous stages, including
feature engineering, hybrid model training and prediction,
data collection, pre-processing utilizing an ETL pipeline, and
comprehensive performance assessments. Figure 1 depicts the
data science paradigm as an operational procedure for
enhancing model robustness and interpretability in the context
of financial time series forecasting [28][29].
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Figure 1. Data Science Framework
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A. Data Acquisition

The first and fundamental stage of the hybrid prediction
framework is the data acquiring procedure, as shown in Figure
1. Yahoo Finance, an acclaimed and reliable source of
financial market data, contributed the dataset for this research
project. In order to ensure automation, reproducibility, and
immediate retrieval, daily historical data for Bitcoin (BTC-
USD) was physically extracted using the Python-based
yfinance package [30] [31][32].

The compilation encompasses 1,827 daily records during a
five-year period, from January 1, 2020, to December 31,
2024. Nevertheless, a filtered subset of 517 recent entries—
corresponding to data from January 1, 2024 to January 1,
2025—is utilized throughout model training, validation, and
evaluation in order to conform with the restrictions of the
modelling framework and effectively represent the practical
forecasting range. This one-year timeframe captures short-
term volatility and price trends that are applicable to actual
market activity while facilitating a targeted, high-frequency
time series forecasting endeavour [33].

The five main aspects of the dataset for every trading day
are as follows:

e The open price of Bitcoin is its starting trading value at
the beginning of the day, while the high price is its
highest value throughout the trading session.

e Low Price: the lowest price ever noted;

e Close Price: the total amount of Bitcoin moved during
the day;

e Volume: the final worth of trading at the end of the
session

Out of them, the Close Price has been selected as the
forecasting the objective variable. The choice of terminology
was made due to its captures the complete effect of intraday
price swings and trader sentiment, is straightforward to
interpret, has market significance, and is commonly employed
in financial forecast literature [34].

All price data originally denominated in US dollars (USD)
is converted to Indonesian rupiah (IDR) to retain both global
relevance and local economic context. For Indonesian
investor applications and domestic financial research, this
currency conversion is very critical. In order to maintain
temporal alignment between Bitcoin prices and foreign
exchange rates, the conversion will be carried out using the
historical daily exchange rates that correspond to each
exchange date. As stated in the following layer of Figure 1,
the outcomes of this data acquiring stage can be utilized as the
input for the subsequent step, ETL pre-processing.

B. ETL (Extract, Transform, Load) Pipeline

The estimation framework's second essential step is the
ETL (Extract, Transform, Load) pipeline. As an element of
data pre-processing, this phase provides ensure that the
unprocessed Bitcoin price data gathered in the Data
Acquisition step is cleaned, planned, and processed into a
format that allows it to be utilized to perform sophisticated
analytical processing and modelling.

The yfinance Python package has been utilized to import
the raw dataset that was gathered from Yahoo Finance in
order to starting the extraction process [35]. Each trading
day's Open, High, Low, Close, and Volume are the five
primary financial indicators comprised of this dataset. Full
temporal alignment retains the close price, which is the target
variable, while additional parameters are available to receive
additional engineering. Additionally, to maintain contextual
relevance for the Indonesian financial circumstances, daily
exchange rates are extracted to convert prices denominated in
USD into IDR. This conversion represents a linear rescaling
that has little impact on the statistical properties of the data or
the relative performance of the models, but it enhanced
interpretability for domestic investors by expressing the local
financial environment more realistically by means of Rupiah's
own exchange-rate fluctuations.

The ETL pipeline's transformation stage is its most
demanding part. Among them are:

e Handling Missing Values: interpolating or reducing
rows with null unusual entries to

or ensure

completeness.

e  Outlier Detection and Smoothing: Identifying aberrant
spikes or dips that can interfere with model training and
flattening them applying historical context or statistical
thresholds.

e Currency Conversion: The kept
economically proper by converting close prices from
USD to IDR using the associated daily exchange rates.

that all

and match

time series 1is

e Resampling
observations

and Alignment:
have periodic
legitimate trading days.

validating
intervals

e Lookback Window Construction: The dataset is
organized using a 60-day sliding window trend, with
each input sequence (X) encompassing 60 daily values
beyond the past that are used in predicting the target
period (Y), which is 30 days from presently.

This stage may also involve the implementation of
normalization or scaling (e.g., Min-Max scaling or Z-score
standardization), especially with models that are sensitive to
scale, involving neural networks and tree ensembles.

The cleaned and organized data must then be loaded into
certain information structures for modelling as the last stage.
The generated datasets are structured as supervised learning
sequences, as shown in the following branch of Figure 1, with
each sample composed of engineered input features and
corresponding future target values. These datasets are
generated for input into traditional or artificial intelligence-
based predictive models.

This ETL procedure provides an essential connection
between the collection of raw data and the emergence of
significant characteristics by ensuring the coherence,
integrity, and sustainability of the incoming data. The study
assures the modelling process's consistency, resilience, and
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adaptability for various financial time series by simplifying
and standardizing this pipeline.

C. Feature Engineering

The forecasting pipeline's feature engineering stage plays
an important role considering it transforms preprocessed time
series data into structured inputs the fact can be used by
models. According to the type of predictive model, the feature
engineering process diverges into two concurrent tracks, as
represented in Figure 1: artificial intelligence (AI)-based
models and traditional statistical approaches. Feature
synthesis for each class of model requires distinct approaches
based on its capabilities, assumptions, and data handling
procedures [36].

Feature engineering for traditional models like Linear
Regression, ARIMA, and Prophet emphasizes interpretability
and statistical assumptions. In this context, developed features
include time-derived components (e.g., weekday, month, or
quarter) to capture seasonality and calendar implications,
which are particularly advantageous for Prophet. Lag
variables have been generated from previous closing prices
(e.g., lag-1 to lag-60) to capture autoregressive patterns
throughout time [4][5][6][37]. These lagged properties enable
linear models like ARIMA to detect direct temporal
associations in the series. Moving averages and standard
deviations are among the rolling statistics intended to
illustrate short-term trends and volatility. ARIMA, in
particularly, leverages differencing to figure out stationarity,
which is essential for meaningful parameter estimation in
time series models. The resulting feature set is inadequate,
interpretable, and in agreement with traditional forecasting
theory [9][17].

Al-based models, such as Random Forest, XGBoost, and
Long Short-Term Memory (LSTM) networks, necessitate a
more flexible and multimodal feature engineering method.
These models are designed to automatically learn
multifaceted nonlinear relationships from data, allowing for
more detailed resource representations. A 60-day rolling
window is used for generating input sequences in both tree-
based models and LSTMs, which are then utilized for
forecasting the following 30-day horizon [12][38][39]. Tree-
based models flatten this window into fixed-length feature
vectors, whilst LSTM networks preserve the sequence
structure as a three-dimensional array for retaining temporal
order. In the absence of lag sequences, the Al-based feature
set includes derived indicators such as daily returns,
percentage changes, volatility measurements, and volume-
based signals such as trade volume moving averages and
volume-price ratios. Although machine learning models are
capable of processing multivariate inputs and high
dimensionality, additional technical indicators have been
integrated as part of the learning process. Furthermore, feature
implications analysis in tree-based models processes the
feature space, whereas LSTMs automatically capture latent
temporal associations using internal storage the procedures
[40].

These two complemented feature engineering approaches,
which are represented in Figure 1 as parallel pathways,
collaborate in order to enhance each model type's ability to
forecast for the Bitcoin price forecasting working by making
certain that each model type obtains the most informative and
functionally relevant information.

D. Model Predictions

Following feature engineering, the produced datasets will
be used to train an extensive variety of forecasting models,
which are divided into two categories: traditional models and
artificial intelligence (AI) models. This hybrid modeling
procedure has been designed to take advantage of the unique
features of both model groups. Traditional models provide
interpretability and statistical rigor, whereas Al-based models
excel in identifying complicated, nonlinear patterns in data.

We ensure fairness across all approaches; the models were
validated using a chronological hold-out split, with the
earliest 80% of observations used for training and the most
recent 20% reserved for testing. This prevents temporal
leakage and better reflects a real-world forecasting scenario.
Hyperparameter tuning was not the primary focus of this
research, as the study emphasizes benchmarking rather than
optimization. Accordingly, default configurations were
employed for Random Forest, XGBoost, and Prophet, while
ARIMA was fixed at an order of (5,1,0). For the LSTM
model, limited manual iterations were conducted to balance
accuracy and efficiency, resulting in a two-layer architecture
with 50 units each, a dropout rate of 0.2, a batch size of 32,
and 100 epochs with EarlyStopping (patience=10). Before
applying ARIMA, the stationarity of the series was verified
using the Augmented Dickey—Fuller (ADF) test, with
differencing applied when necessary; Prophet and ARIMA
were not fully optimized, as the focus was on methodological
benchmarking rather than parameter fine-tuning [1][2].

The models are all trained and examined on a consistent
data split to provide comparable performance comparisons.
Repeatability and scale investigations are made possible by
the single pipeline the fact that automates the training
technique. Throughout training, each model predicts the
predicted horizon using out-of-sample data. Beyond this, the
predictions undergo the evaluation phase, when their
accuracy, consistency, and comparative behavior are assessed
[41][42].

E. Performance Evaluations

Performance evaluation is the next essential aspect in the
framework, particularly is displayed in Figure 1, after
expectations have been generated employing both traditional
and Al-based models. This phase measures each model's
suggested accuracy, dependability, and comparative behavior
along a variety of analytical parameters. This evaluation is
organized into three primary elements in order to attain this:
(a) Primary Metrics, (b) Robustness Analysis, and (c)
Intermodel Analysis. Collectively, these three elements
constitute an in-depth evaluation of each model's performance
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in terms of both practical effectiveness and precision in

forecasting.

Primary metrics are used to evaluate predictive accuracy,
providing direct comparisons between the predicted values
y” t and the actual observed values y t over the forecasting
horizon t=1,2,...,n. The following standard error-based
formulations are employed.

e  Mean Absolute Error (MAE) calculates the average size
of a series of forecasts' mistakes without implementing
consideration of their direction. The mean of the
absolute discrepancies between the expected and actual
outcomes will be utilized to compute it. The MAE is
relatively easy to understand and provides a linear score,
which indicates that each individual error is given an
equal weight [3].

n
1
MAE =" |y, = ] &
t=1

e Root Mean Squared Error (RMSE), in contrast,
discourages greater deviations more severely by
squaring each mistake before averaging. Because it is
sensitive to outliers, RMSE is especially helpful in
predicting applications where big errors are undesirable

[4].

RMSE = 2

e  Coefficient of Determination (R?) determines the
percentage of the observed data's variation that the
model can account for. Better model fit is indicated by
an R? value around 1, whereas low explanatory power
can be determined by a value close to 0. It is an
advantageous supplement to absolute error metrics such
as RMSE and MAE [5].

Yo (e — 90)? 3)

2ie1 e = y)?

e  Mean Absolute Percentage Error (MAPE) depicts the
average absolute inaccuracy in comparing with actual
values and represents predicting accuracy as a
percentage. Although MAPE is scale-independent, it
may be utilized for comparing models across other
currencies or datasets when y; is close to zero [6].

n
o PN
MAPE=100/OZ Y~ e 4)
n 4 Ve

e  Symmetric Mean Absolute Percentage Error (SMAPE)
adjusts MAPE to account for asymmetry in over- and
under-forecasting. It is especially valuable in financial
forecasting, where percentage deviations can be
misleading if not normalized symmetrically when actual
or predicted values are near zero [7].

n
100% -9
SMAPE = OZ Ye =~ Ve
noL (yel + 1961 /2

R?=1-

)

All of these metrics, which each describe an individual
component of model error behavior, operate well together to
provide an accurate foundation for evaluating the average
prediction performance among models.

The following evaluation component tackles this by
focusing on robustness analysis, which analyses how robust
and accurate model predictions are regardless of noise,
volatility, or outliers, all of which are common in financial
time series such as Bitcoin. This stage of analysis revolves on
non-parametric, distribution-sensitive measures:

e  Median Absolute Error (MedAE) is similar to MAE,
except it estimates the median rather than the mean of
absolute errors. This makes it less susceptible to extreme
values and more appropriate for capturing the core
pattern of prediction errors in volatile settings [8][9].

MedAE = median(|y, — ¥:|) (6)

e  Interquartile Range (IQR) measures the spread of errors
by calculating the range between the 25" and 75%
percentiles. A lower IQR indicates that the model
produces more consistent predictions, even if its mean
error is not the lowest [10][11].

IQR = Q5 — Q, 7)
Where Q; and Qs are first and third quartiles of the
absolute errors. A smaller IQR indicates that most errors
fall within a narrow, predictable range as an indicator of
model stability

e  Outlier Threshold or Sensitivity refers to a model's
tendency to produce large errors when encountering
anomalous or extreme market behaviors. This is
assessed by identifying the frequency and severity of
prediction errors that lie beyond statistical thresholds
(e.g., above 1.5x IQR). Models that maintain stable
performance despite such events are considered more
robust [12][13].

Outlier Threshold = Q3 + 1.5 X IQR (8)

Robustness analysis is essential in financial applications
where occasional large errors can have significant real-world
implications, especially in risk-sensitive decision-making.

The last assessments component is intermodel analysis,
allowing analysts to better understand how models connect to
one another in terms of predictive behavior. In contrast to
focusing solely upon absolute performance, this phase
focuses for similarities, differences, and clustering patterns
between models, revealing meta-level insights into how
forecasting systems compare as ensemble.

e  Pairplots are Intended to display pairwise correlations
between model predictions. Pairplots assist to figure out
whether particular predictions consistently agree or
diverge through contrasting predicted values against one
other. Robust Pearson correlations across models can
imply redundancy, but orthogonal behavior can point to
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complementing modeling ideal for
assembling [14][15].

e  Dendrograms are produced by hierarchical clustering
and group models based on the Euclidean distance (or
other similarity measures) between their prediction
vectors. The dendrogram structure assists in identifying
natural groupings among models, which is vital to
figuring out model families, selecting fluctuated
ensembles, and understanding which modelling
methodologies provide unique forecasting defining
features [16][17].

These intermodel tools not only enable performance
benchmarking, but they additionally provide pertinent tactical
understanding into the interactions between different
forecasting paradigms in science.

The research effort confirms a thorough and equitable
evaluation of forecasting performance through the integration
of these three levels of assessment: intermodel analysis,
robustness checks, and primary accuracy metrics. This
multimodal assessment directly contributes to the data science
framework's last phase, when model outcomes are converted
into practical recommendations for decision-makers.

F. Information and Recommendation Pathways

The synthesis of findings and creation of technical
recommendations constitute the last phase of the suggested
technique, which is depicted at the bottom of Figure 1. For
practitioners, analysts, and decision-makers intending at
applying forecasting approaches in practical financial
contexts, especially in the volatile and high-impact field of
cryptocurrencies, this phase serves as essential for integrating
complex model outputs into helpful guidance.

This Information and Recommendation Framework
provides structured, technical pathways for growing the
forecasting system in both academic research and real-world
financial applications, in spite of analyzing model
performance. It completes the end-to-end hybrid forecasting
methodology recommended in this study and functions as the
pipeline's last output.

approaches

II1. RESULTS AND DISCUSSIONS

A. Overview Observations

The current investigation applies a consistent setting for
experiments for all tests in order to determine the forecasting
capacity utilization provided by various models. Models are
trained on a 60-day historical window and handed the task of
forecasting the upcoming 30 days. The prediction task has
been structured using a rolling-window framework. Through
modeling the sequential nature of financial data, this
windowing approach enables a realistic simulation of time
series forecasting.

The dataset covers 517 daily Bitcoin price evaluations from
January 1, 2020, to December 31, 2024. To determine the
implications of data distribution on forecasting accuracy, the
models were trained wusing two differing feature

representations: the raw feature set (in absolute price scale)
and a log-transformed version.

Three traditional statistical techniques—Linear Regression,
ARIMA, and Prophet—as well as four artificial intelligence
(Al)-based techniques—Random Forest, XGBoost, and
LSTM—were deployed to develop and analyse seven
forecasting models. A total of 14 experimental configurations
are generated by applying each model separately to both
feature sets. As mentioned in the following sections, a
thorough set of assessment evaluates and visual analyses have
been employed to evaluate each model's performance.

B. Predictive Visualization

Two important graphs are shown in this part to give a visual
evaluation of the model's performance. Both in terms of trend
alignment and predictions for the future, these visualizations
serve as proof of the way precisely each forecasting model
represents the actual structure of the Bitcoin price.

Figure 2 shows a plot matching the actual Bitcoin prices
over the evaluation period with the projected figures obtained
from each model. By superimposing forecasts from every
model on a single timeline, this line diagram provides it
possible to compare the extent to which each model tracks the
actual market moves. Effectively tracking both upward and
downward movements with little latency, models like LSTM
and XGBoost indicate a high degree of alignment with the real
price curve. In contrast, simpler linear techniques, such as
Linear Regression, tend to smooth out variations and are
unable to adjust to abrupt market movements.

- Daily Predisian v Actusl Biieoin Price in IDR

v w 1

a s o

a1 P
Tine Hndes ol Tl Sel)

Figure 2. Prediction alignment across models

The potential of each model for forecasting 30 future data
points based on the most recent 60-day input window can be
observed more thoroughly in figure 3. The pattern and spatial
distribution of forecasts across numerous models has been
highlighted in this figure. The best-performing models,
LSTM and XGBoost in particular, show subtle sensitivity to
the current trend and generate predictions that correspond to
the underlying momentum of the price data. Prophet tends to
generate conservative projections and regularly ignores
unexpected directional alterations, despite being typically
reliable at discerning trend and seasonality. Beyond
consistent conditions, Random Forest and ARIMA indicate
limited extrapolation power, which might contribute to
predictions becoming either flat or lag.
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30-Day Ahead Forecast Comparison (All Models)
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Figure 3. Forecasting trajectory all models

All things considered, LSTM and XGBoost appears to be
more efficient at detecting both the broader trend and the
short-term volatility. Their natural ability for representing
intricate, nonlinear temporal relationships may have been a
consequence of this. Whereas ARIMA and Linear Regression
have difficulty able to adapt to irregular price behavior,
Prophet does an adequate task of capturing smoother trends
[4]1(33][38].

C. Primary Metrics Evaluation

Model performance had been assessed using five error
metrics: Mean Absolute Error (MAE), Root Mean Squared
Error (RMSE), Coefficient of Determination (R?), Mean
Absolute Percentage Error (MAPE), and Symmetric Mean
Absolute Percentage Error. The above indicators combine for
evaluating prediction accuracy, error magnitude, and
consistency across all models.

TABLE 1.
PERFORMANCE METRICS SUMMARY (ABSOLUTE FEATURE SET)
Model MAE () RMSE ()) RZ(D) MAPE (%) (1) SMAPE (%) (1)
Linear 21.37M 2993 M 0.984 2.022 2.031
Random Forest 101.92 M 196.50 M 0.294 7.598 8.586
XGBoost 105.86 M 198.03 M 0.283 7.988 8.998
LSTM 24.58 M 33.64 M 0.979 2.278 2.288
ARIMA 21.31 M 29.72 M 0.984 2.020 2.026
Prophet 90.68 M 106.75 M 0.791 8.559 8.447

The models in Table 1 with the lowest MAE and RMSE
values in the above table are the Linear Regression and
ARIMA models, which both have remarkably comparable
accuracy scores. A strong match to the data is indicated by the
similarities in their best R2 score of 0.984. Interestingly,
LSTM gets a high R2 of 0.979 and low percentage-based
errors (MAPE and SMAPE about 2.28%), indicating that it
reflects the pattern well, but with some divergence in
magnitude, although experiencing slightly larger absolute
erroneous. In the present research, Random Forest and
XGBoost, on the other hand, behaved poorly. Both have
significant absolute and percentage errors, as well as low R2
values, implying that they are unable to adequately express
the temporal structure of the data, presumably due to its
nonsequential nature. Prophet outperforms the tree-based
models, but it is still behind the top three.

Figure 3 demonstrates the absolute prediction errors for all
models. Models such as Linear, ARIMA, and LSTM have
smaller and more centered error distributions, which
facilitates the numerical evaluation. XGBoost and Random
Forest show greater spreads and higher average mistakes.

Figure 4 depicts the prediction error distributions for each
model in normal scale, enabling an obvious comparison of
how each model's forecasts differ from actual values. Linear
Regression and ARIMA again stand out, with error
distributions that are narrower and more symmetric, centered
at zero. LSTM follows with a little larger but still constrained
distribution.

Absolute Ear Distribution {(Nermal Seale)

Asoluts Emar (DR}

Figure 4. Absolute Error Distribution

Pradiction Error Distribution

2
Errar (Prodicied - Actual)

Figure 5. Prediction Error Distribution

Tree-based models, such as Random Forest and XGBoost,
reveal substantial bias and variance, causing lower R? values.
The calculations and graphics clearly suggest that Linear
Regression, ARIMA, and LSTM are the most dependable
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models for forecasting Bitcoin values in this study, with
LSTM providing a competitive nonlinear alternative to Al
algorithms [6][56].

D. Robustness Analysis

Traditional evaluation metrics provide valuable insights
into overall model correctness, whereas robustness indicators
provide a more in-depth understanding of the stability and
consistency of each model's predictions under numerous
circumstances. This section evaluates the Median Absolute
Error (MedAE), Interquartile Range (IQR), and number of
prediction outliers, featuring three relation error distribution
visualizations to support the analysis.

_ 1eB Boxplot of Absolute Errors Across Models
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Figure 6. Absolute Error (normal scale)

The distribution of absolute errors for each model on the
original (linear) scale can be observed in this boxplot in figure
6. With modest median values and comparatively limited
error bands, the Linear and ARIMA models tend to function
steadily with few dramatic departures. On the other hand, the
error ranges of Random Forest, XGBoost, and Prophet are
greater, indicating more variability and either overfitting or
undergeneralization.

Baoxplot of Absolute Errors (Log Scale)
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Figure 7. Absolute Error (log scale)

Figure 7 demonstrates changes in performance across small
and large error ranges by displaying errors on a logarithmic
scale. The log transformation compounds disparities between
models with significant outliers. The compactness of ARIMA
and Linear models becomes more apparent here, whereas the
distributions of tree-based models such as XGBoost and
Random Forest show a strong rightward skew, indicating a
higher proportion of high-error circumstances.

This enhanced version incorporates median lines (Figure 8),
allowing for a direct visual comparison of central error
patterns between models. Notably, ARIMA has the lowest
MedAE (14.37M), followed by Linear Regression (14.55).
These findings are in accordance with their consistent
predictive performance. In contrast LSTM has a fairly high
MedAE (56.65M) despite great average metric performance,
indicating some significant mispredictions that interfere with
error consistency. Prophet, however having a high MedAE
(83.12M), has a very low number of outliers (3), signaling that
its oversights are regularly enormously but less irregular.

The most reliable models, as shown by the results of our
research of Table 2, are ARIMA and Linear Regression, that
maintain a low median error with a narrow IQR and few
outliers. On the other hand, Random Forest and XGBoost are
less predictable under volatile market situations due to their
high unpredictability and frequent outliers. Although LSTM
exhibits great promise, it might need to be further improved
to lower exceptionally large prediction errors [48][56].

Boxplot of Absolute Errors (Log Scale)
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Figure 8. Absolute Error with Median

TABLE 2.
SUMMARIZES THE ROBUSTNESS ANALYSIS

Model MedAE IQR Outliers Threshold
Linear 1437 M 23.37M 19

Random Forest 1455 M 2411 M 17

XGBoost 3345M 63.98 M 44

LSTM 36.00 M 64.34 M 44

ARIMA 56.65M 61.96 M 19

Prophet 83.12M 7740 M 3
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E. Intermodel Correlation and Agreement

An intermodel research has been conducted in order to get
a greater comprehension of the forecasting models'
interactions beyond each measurement. This provides
structural grouping, error behaviors, and prediction alignment
comparisons. These results have significance when
determining whenever particular frameworks could be
absorbed satisfactorily and whether they behave similarly,
neither of which are needed to generate dependable ensemble
or hybrid systems.

The Pearson correlation coefficients between each model's
anticipated values and the actual closing prices of Bitcoin are
presented in Figure 9. remarkably, the models that perform
greatest across critical evaluation metrics are the ARIMA and
Linear Regression models, which additionally exhibit the
strongest correlations with the actual information.
Furthermore, LSTM demonstrates a substantial correlation,
revealing that it might detect widespread trend patterns in
spite of its complex architecture. Random Forest and
XGBoost, whereas exhibit a slightly lower correlation with
the real series, which could indicate overfitting to local noise
or a less effective understanding of the underlying market

direction.
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Figure 9. Correlation of Predicted and Actual Values

The correlation of absolute error magnitudes among models
can be observed in Figure 10, which provides additional
insight into the behavior of model mistakes. Models are likely
to make mistakes on the same observations if there are several
high correlations in this matrix. As expected, given their
similar tree-based architecture, XGBoost and Random Forest,
for example, reveal a substantial degree of error correlation.
However, because both ARIMA and linear models depend
upon trend-driven statistical concepts, they also have
important error similarities. Interestingly, Prophet and LSTM
seem to have less overlap in their error profiles and are more
independent, which shows that they could potentially be
effective when recognizing various aspects of the data when
applied in a mixed ensemble arrangement.

Figure 11 illustrates a visual comparison of model
predictions against the actual values and each other utilising
a matrix of scatter plots and distributions to support the results

presented. Each model's prediction distributions are
represented by the diagonal elements, and the associations
among each model's predictions are indicated by the off-
diagonal elements. Strong visual alignment with the real
series has been shown by ARIMA, Linear, and LSTM, which
generate narrow, focused patterns. The more scattered
patterns generated by Random Forest and XGBoost, on the
contrary hand, emphasize their greater variability and
possible instability in specific circumstances.
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A scatter matrix of absolute errors across models can be
seen in Figure 12 to better examine this variability. It is
readily apparent that Linear Regression and ARIMA
consistently produce more focused and lower error values,
indicating more reliable performance. XGBoost and Random

A Hybrid Data Science Framework for Forecasting Bitcoin Prices using Traditional and AI Models

(Puguh Hiskiawan, Jovan William, Louis Feliepe Tio Jansel)



2098

e-ISSN: 2548-6861

Forest, on the reverse side, exhibit important co-variability
and broader distributions, emphasizing their tendency to
make similar types of mistakes. Prophet's appropriately
compact and uniform dispersion, notwithstanding its huge
error numbers, reflects underfitting rather than failure to
perform.

Scatter Matrix of Absolute Errors Across Models
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The models ultimately are grouped hierarchically according
to their behavior in Figure 13. The way models cluster based
on error structures or prediction similarity is illustrated by this
dendrogram. The restricted grouping of Linear Regression
and ARIMA confirms their similar performance patterns and
similar methodological foundations. Furthermore, Random
Forest and XGBoost indicate a parallel in their ensemble-
learning approach and high-variance results, constituting a
separate cluster. With the integration of temporal dynamics
and trend-capturing influence, LSTM is located in the middle
of those classifications. But Prophet is set apart from the
others, which emphasizes its distinctive behavior and slightly
distinct forecast profile.

1a0 Dendrogram: Similarity of Absolute Errors Between Models
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Figure 13. Similarity Dendogram among Absolute Error between Models
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In the final analysis, this intermodel research not only
validates the higher dependability of ARIMA, Linear, and
LSTM models, but also demonstrates their complementing
tendencies, making them excellent candidates for ensemble
integration. Models such as XGBoost and Random Forest, by
contrast, are different but frequently overlap and require
careful calculation because to their volatility and shared
constraints. These structural insights are useful for enhancing
forecasting systems using model selection or hybridization
methods [57].

F. Interpretation and Insights

The comprehensive evaluation across numerous
performance characteristics indicates ARIMA and Linear
Regression are the most consistently dependable models for
short-term Bitcoin price forecasting in this study. Both
models perform adequately across all key factors, with low
MAE and RMSE, high R? values, and insignificant
percentage-based  errors (MAPE, SMAPE). Their
performance is further supported by excellent error
distribution patterns (as depicted in the boxplots and absolute
error visualizations), characterized by low median absolute
errors, narrow interquartile ranges (IQR), and few outliers.
These properties reveal that both ARIMA and Linear
Regression generate dependable forecasts with little
volatility, making them ideal for applications required
interpretability and stability, such as financial monitoring or
risk-sensitive trading approaches.

LSTM provides significant strength in capturing non-linear
patterns and short-term temporal dynamics, although slightly
lagging beyond ARIMA and Linear in terms of raw accuracy.
In both current and upcoming circumstances, its prediction
curves nearly match actual prices. Nevertheless, there are
some trade-offs associated with its performance. LSTM is
more sensitive to the volume and quality of data, requiring
more intricate hyperparameter adjustment, and takes longer to
train. Due to this, it is more suitable for circumstances in
which there are ample computational resources and prevalent
datasets available, particularly for modeling more volatile or
non-linear market segments. Random Forest and XGBoost,
on the other hand, indicate low reliability despite their
potential advantage in dealing with high-dimensional, non-
linear data. These models underperform in practically each
measurement and produce greater, more unpredictable errors.
They additionally exhibit a significant inter-model error
correlation, showing that deficiencies are comparable across
data points. This redundancy, along with excessive volatility,
lowers their standalone worth. However, they may still be
useful in ensemble settings where each particular modeling
architecture states unique perspectives. Whereas Prophet was
constructed for trend-seasonality decomposition, it behaved
inadequately in the majority of evaluations in this study. It
provides relatively high MAE, RMSE, and error percentages,
but its correlation with actual data and other models is limited.
Nonetheless, Prophet demonstrates consistent behavior and
minimal variance in some robustness indicators (e.g., low
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outlier count), rendering it potentially acceptable for
fundamental trend forecasting tasks in less time-sensitive or
high-resolution domains.

In the final analysis, ARIMA and Linear Regression provide
the optimum integrate of accuracy, durability, and simplicity,
whereas LSTM adds value when modelling complexity or
temporal depth must be considered. Meanwhile, tree-based
models and Prophet could require more cautious deployment,
preferably in hybrid or ensemble systems where their
distinctive qualities can be carefully employed. These

findings offer straightforward direction for practical
implementation and prospective model development
procedures.

G. Implications and Recommendations

The results imply that the determination of model should be
in line with the objectives of forecasting and the
characteristics of the data. Although it needs a lot of data and
processing power, LSTM is best suited for capturing intricate,
short-term dynamics. XGBoost is perfect for real-world
deployment because it strikes a compromise between
precision and efficiency. For rapidly, comprehensible results,
traditional models like ARIMA and Linear Regression are
still helpful, particularly in less volatile circumstances.

Practitioners should consider log transformations to
improve stability—especially for Prophet and XGBoost—and
leverage robustness analysis to identify outlier-sensitive
models. Given the diverse strengths across models, ensemble
strategies could further enhance prediction reliability,
particularly in volatile markets like cryptocurrency.

IV. CONCLUSIONS

The current research presents a comparative forecasting
framework that predicts Bitcoin's daily closing price in IDR
using classic statistical models (ARIMA, Linear Regression,
Prophet) and Al-based approaches (Random Forest,
XGBoost, LSTM). Our outcomes illustrate that AI models,
particularly LSTM and XGBoost, excel at catching short-
term, non-linear patterns, with LSTM providing the highest
accuracy despite higher computing costs. Traditional models
such as ARIMA and Linear Regression, while less adaptable
to volatility, are nonetheless competitive due to their
simplicity and resilience. Robustness analyses and
visualization tools (for example, forecast curves, error
distributions, and intermodel correlations) highlight
necessary trade-offs and identify potential for ensemble
approaches.

Finally, the research study not only depicts the intricate
trade-offs between various forecasting methods, but also
provides actionable advice for practitioners and academics.
The suggested methodology can be applied to other highly
volatile financial products, enabling better informed and
robust decision-making in the rapidly transforming digital
economy. Moreover, the comparative performance metrics
reported in this study provide convincing numerical evidence
of the framework’s reliability, reinforcing its value as a

credible reference for both scholarly research and practical
applications. Nonetheless, this study is limited to historical
price data and does not account for external drivers such as
macroeconomic variables or sentiment factors, which may
significantly influence Bitcoin prices. Future extensions of
the framework could incorporate these fundamental aspects to
enhance predictive realism and broaden its applicability.
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