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 Bitcoin, a highly volatile and decentralized digital asset, presents considerable 

challenges for accurate price forecasting. This study proposes an applied data science 

framework that compares traditional statistical approaches with modern Artificial 

Intelligence (AI)-based models to predict Bitcoin’s daily closing price. Using BTC-

USD historical data from January 2020 to December 2024, we converted prices into 

Indonesian Rupiah (IDR) to increase local relevance. Our forecasting horizon is 30 

days, based on a 60-day lookback window. We evaluate six models: Linear 

Regression, ARIMA, and Prophet as traditional techniques, alongside Random 

Forest, XGBoost, and Long Short-Term Memory (LSTM) networks as AI 

approaches. All models were trained using lag-based or sequence-based time series 

features and evaluated using MAE, RMSE, R², MAPE, and SMAPE. Results show 

that AI models, particularly LSTM and XGBoost, offer better performance in 

capturing short-term non-linear dynamics compared to traditional models. LSTM 

provides high accuracy, though with greater computational demand, while XGBoost 

strikes a balance between speed and precision. Prophet and ARIMA remain effective 

for quick and interpretable forecasts but struggle with abrupt trend shift common in 

cryptocurrency markets. In addition to performance metrics, we include a robustness 

analysis based on median absolute error and outlier detection to assess model 

stability under extreme variations. Visual analytics—including forecast curves, error 

distributions, and uncertainty bounds—help interpret and communicate model 

behavior. This comprehensive evaluation offers practical insights for investors, 

analysts, and fintech practitioners, and the pipeline can be extended to other volatile 

assets 
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I. INTRODUCTION 

The quick rise of digital banking has elevated bitcoin to the 

status of one of the most influential and volatile assets in 

today's global economy. precisely an autonomous digital 

currency with no oversight, Bitcoin is significantly affected 

by market sentiment, international occurrences, regulations, 

and technological disruptions. Due to these features, 

predicting the price regarding bitcoin is an essential but 

difficult issue for researchers, financiers, and regulators [1] 

[2] [3]. 

Throughout the preceding era, several studies have made 

efforts to model Bitcoin fluctuations in prices utilizing both 

traditional time series approaches and artificial intelligence 

(AI) techniques. Traditional models, especially linear 

regression, autoregressive integrated moving average 

(ARIMA), and prophet, are straightforward and effortless to 

comprehend [4] [5][6]. Linear Regression, for instance, 

reveals an explicit association between lagged attributes and 

future prices [7][8], whereas ARIMA is a well-known 

statistical method for modelling autocorrelated and steady 

data [9]. Prophet, developed through Facebook, optimizes 

time series forecasting by handling variability and missing 

data, making it excellent for business and finance applications 

[6]. Nevertheless, these classical models regularly manage to 

accurately represent the non-linear and chaotic behaviour of 

mailto:phiskiawan@bundamulia.ac.id
mailto:s36240018@student.ubm.ac.id
mailto:s36240023@student.ubm.ac.id
https://creativecommons.org/licenses/by-sa/4.0/


               e-ISSN: 2548-6861  

JAIC Vol. 9, No. 5, October 2025:  2089 – 2101 

2090 

Bitcoin's price, particularly following high-volatility events. 

As a result, the research has moved toward AI-based 

techniques like Random Forest, XGBoost, and Long Short-

Term Memory (LSTM) networks. Random Forest [10] [11] 

and XGBoost [12] [13] are tree-based ensemble algorithms 

that can reliably forecast and robustly represent intricate 

feature interpersonal interactions [1], [14][15]. LSTM, a deep 

learning model designed for sequential data, exhibited 

exceptional results in capturing temporal dependencies and 

long-term trends in financial time series [16][17]. 

A few investigations have methodically evaluated both 

families of models within an identical, verifiable data science 

pipeline, and while individual studies have demonstrated that 

AI models often outperform traditional ones under specific 

circumstances, comprehensive comparisons remain limited. 

In this study, we advance the literature by introducing a 

hybrid forecasting framework, where “hybrid” denotes the 

integration of traditional statistical approaches and AI-based 

methods into a single, unified pipeline. This framework not 

only allows direct comparison between paradigms but also 

leverages their complementary strengths, offering a more 

holistic view of forecasting performance. Additionally, much 

of the current research merely targets prediction accuracy, 

omitting model robustness, interpretability, and inter-model 

analysis—all of which are essential for practical application. 

[2][18][19][20]. 

The main advantage of conducting research on Bitcoin 

price prediction is being able to assist in determining actions 

in the midst of uncertainty. Detailed projections can influence 

trading tactics, reduce risk, along with enhance financial 

planning for investors [21][22]. Additionally, prediction 

models can be deployed by regulatory organizations and 

governments for maintaining their sights on systemic 

potential risks in cryptocurrency markets. But the field also 

has significant obstacles to overcome. Due to Bitcoin is 

vulnerable to abrupt external shocks, consisting of regulatory 

announcements or geopolitical events, it is difficult for any 

model to consistently achieve long-term accuracy [23][24]. 

Moreover, regardless of whether AI models are strong, they 

are frequently seen as "black boxes" which require to be 

thoroughly evaluated for interpretability, overfitting, and 

fairness [25][26]. 

A hybrid forecasting conduct that combines traditional 

statistical and artificial intelligence (AI)-based models in a 

structured data science pathway is recommended in the 

current research to overcome these deficiencies. The three 

major advantages of this research consider are outlined as 

follows: (1) it presents an equitable assessment of numerous 

models under comparable conditions; (2) its improvements 

intermodel interpretability and robustness beyond traditional 

metrics; and (3) it assembles the whole process in a data 

science framework which can be modular and extensible. This 

makes the mechanism verifiable or adjustable to other volatile 

assets like Ethereum, oil prices, or stock indexes by other 

professionals and academics [27]. 

The research's projected result is an in-depth evaluation of 

AI and traditional models for Bitcoin forecasting, as well as 

information on which approaches best balance 

interpretability, accuracy, perseverance, and computational 

efficiency. The main objectives of this project are to 

contribute a reusable forecasting architecture to the financial 

data science ecosystem and a data-driven framework for 

decision-making support in volatile financial scenarios. To 

enhance their practical relevance, the projections are offered 

in Indonesian Rupiah (IDR). While the USD-IDR conversion 

is a linear transformation that has no influence on model 

performance, it presents the results in the local financial 

context, where Rupiah exchange-rate volatility provides 

interpretive value for Indonesian investors and policymakers. 

 

II. METHODS  

The procedure is divided into numerous stages, including 

feature engineering, hybrid model training and prediction, 

data collection, pre-processing utilizing an ETL pipeline, and 

comprehensive performance assessments. Figure 1 depicts the 

data science paradigm as an operational procedure for 

enhancing model robustness and interpretability in the context 

of financial time series forecasting [28][29]. 

 

 
Figure 1. Data Science Framework 
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A. Data Acquisition 

The first and fundamental stage of the hybrid prediction 

framework is the data acquiring procedure, as shown in Figure 

1. Yahoo Finance, an acclaimed and reliable source of 

financial market data, contributed the dataset for this research 

project. In order to ensure automation, reproducibility, and 

immediate retrieval, daily historical data for Bitcoin (BTC-

USD) was physically extracted using the Python-based 

yfinance package [30] [31][32]. 

The compilation encompasses 1,827 daily records during a 

five-year period, from January 1, 2020, to December 31, 

2024. Nevertheless, a filtered subset of 517 recent entries—

corresponding to data from January 1, 2024 to January 1, 

2025—is utilized throughout model training, validation, and 

evaluation in order to conform with the restrictions of the 

modelling framework and effectively represent the practical 

forecasting range. This one-year timeframe captures short-

term volatility and price trends that are applicable to actual 

market activity while facilitating a targeted, high-frequency 

time series forecasting endeavour [33]. 

The five main aspects of the dataset for every trading day 

are as follows: 

• The open price of Bitcoin is its starting trading value at 

the beginning of the day, while the high price is its 

highest value throughout the trading session. 

• Low Price: the lowest price ever noted; 

• Close Price: the total amount of Bitcoin moved during 

the day;  

• Volume: the final worth of trading at the end of the 

session 

Out of them, the Close Price has been selected as the 

forecasting the objective variable. The choice of terminology 

was made due to its captures the complete effect of intraday 

price swings and trader sentiment, is straightforward to 

interpret, has market significance, and is commonly employed 

in financial forecast literature [34]. 

All price data originally denominated in US dollars (USD) 

is converted to Indonesian rupiah (IDR) to retain both global 

relevance and local economic context. For Indonesian 

investor applications and domestic financial research, this 

currency conversion is very critical. In order to maintain 

temporal alignment between Bitcoin prices and foreign 

exchange rates, the conversion will be carried out using the 

historical daily exchange rates that correspond to each 

exchange date. As stated in the following layer of Figure 1, 

the outcomes of this data acquiring stage can be utilized as the 

input for the subsequent step, ETL pre-processing. 

 

B. ETL (Extract, Transform, Load) Pipeline 

The estimation framework's second essential step is the 

ETL (Extract, Transform, Load) pipeline. As an element of 

data pre-processing, this phase provides ensure that the 

unprocessed Bitcoin price data gathered in the Data 

Acquisition step is cleaned, planned, and processed into a 

format that allows it to be utilized to perform sophisticated 

analytical processing and modelling.  

The yfinance Python package has been utilized to import 

the raw dataset that was gathered from Yahoo Finance in 

order to starting the extraction process [35]. Each trading 

day's Open, High, Low, Close, and Volume are the five 

primary financial indicators comprised of this dataset. Full 

temporal alignment retains the close price, which is the target 

variable, while additional parameters are available to receive 

additional engineering. Additionally, to maintain contextual 

relevance for the Indonesian financial circumstances, daily 

exchange rates are extracted to convert prices denominated in 

USD into IDR. This conversion represents a linear rescaling 

that has little impact on the statistical properties of the data or 

the relative performance of the models, but it enhanced 

interpretability for domestic investors by expressing the local 

financial environment more realistically by means of Rupiah's 

own exchange-rate fluctuations. 

The ETL pipeline's transformation stage is its most 

demanding part. Among them are: 

• Handling Missing Values: interpolating or reducing 

rows with null or unusual entries to ensure 

completeness. 

• Outlier Detection and Smoothing: Identifying aberrant 

spikes or dips that can interfere with model training and 

flattening them applying historical context or statistical 

thresholds. 

• Currency Conversion: The time series is kept 

economically proper by converting close prices from 

USD to IDR using the associated daily exchange rates. 

• Resampling and Alignment: validating that all 

observations have periodic intervals and match 

legitimate trading days. 

• Lookback Window Construction: The dataset is 

organized using a 60-day sliding window trend, with 

each input sequence (X) encompassing 60 daily values 

beyond the past that are used in predicting the target 

period (Y), which is 30 days from presently. 

This stage may also involve the implementation of 

normalization or scaling (e.g., Min-Max scaling or Z-score 

standardization), especially with models that are sensitive to 

scale, involving neural networks and tree ensembles. 

The cleaned and organized data must then be loaded into 

certain information structures for modelling as the last stage. 

The generated datasets are structured as supervised learning 

sequences, as shown in the following branch of Figure 1, with 

each sample composed of engineered input features and 

corresponding future target values. These datasets are 

generated for input into traditional or artificial intelligence-

based predictive models. 

This ETL procedure provides an essential connection 

between the collection of raw data and the emergence of 

significant characteristics by ensuring the coherence, 

integrity, and sustainability of the incoming data. The study 

assures the modelling process's consistency, resilience, and 
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adaptability for various financial time series by simplifying 

and standardizing this pipeline.  

 

C. Feature Engineering 

The forecasting pipeline's feature engineering stage plays 

an important role considering it transforms preprocessed time 

series data into structured inputs the fact can be used by 

models. According to the type of predictive model, the feature 

engineering process diverges into two concurrent tracks, as 

represented in Figure 1: artificial intelligence (AI)-based 

models and traditional statistical approaches. Feature 

synthesis for each class of model requires distinct approaches 

based on its capabilities, assumptions, and data handling 

procedures [36]. 

Feature engineering for traditional models like Linear 

Regression, ARIMA, and Prophet emphasizes interpretability 

and statistical assumptions. In this context, developed features 

include time-derived components (e.g., weekday, month, or 

quarter) to capture seasonality and calendar implications, 

which are particularly advantageous for Prophet. Lag 

variables have been generated from previous closing prices 

(e.g., lag-1 to lag-60) to capture autoregressive patterns 

throughout time [4][5][6][37]. These lagged properties enable 

linear models like ARIMA to detect direct temporal 

associations in the series. Moving averages and standard 

deviations are among the rolling statistics intended to 

illustrate short-term trends and volatility. ARIMA, in 

particularly, leverages differencing to figure out stationarity, 

which is essential for meaningful parameter estimation in 

time series models. The resulting feature set is inadequate, 

interpretable, and in agreement with traditional forecasting 

theory [9][17]. 

AI-based models, such as Random Forest, XGBoost, and 

Long Short-Term Memory (LSTM) networks, necessitate a 

more flexible and multimodal feature engineering method. 

These models are designed to automatically learn 

multifaceted nonlinear relationships from data, allowing for 

more detailed resource representations. A 60-day rolling 

window is used for generating input sequences in both tree-

based models and LSTMs, which are then utilized for 

forecasting the following 30-day horizon [12][38][39]. Tree-

based models flatten this window into fixed-length feature 

vectors, whilst LSTM networks preserve the sequence 

structure as a three-dimensional array for retaining temporal 

order. In the absence of lag sequences, the AI-based feature 

set includes derived indicators such as daily returns, 

percentage changes, volatility measurements, and volume-

based signals such as trade volume moving averages and 

volume-price ratios. Although machine learning models are 

capable of processing multivariate inputs and high 

dimensionality, additional technical indicators have been 

integrated as part of the learning process. Furthermore, feature 

implications analysis in tree-based models processes the 

feature space, whereas LSTMs automatically capture latent 

temporal associations using internal storage the procedures 

[40]. 

These two complemented feature engineering approaches, 

which are represented in Figure 1 as parallel pathways, 

collaborate in order to enhance each model type's ability to 

forecast for the Bitcoin price forecasting working by making 

certain that each model type obtains the most informative and 

functionally relevant information. 

 

D. Model Predictions 

Following feature engineering, the produced datasets will 

be used to train an extensive variety of forecasting models, 

which are divided into two categories: traditional models and 

artificial intelligence (AI) models. This hybrid modeling 

procedure has been designed to take advantage of the unique 

features of both model groups. Traditional models provide 

interpretability and statistical rigor, whereas AI-based models 

excel in identifying complicated, nonlinear patterns in data. 

We ensure fairness across all approaches; the models were 

validated using a chronological hold-out split, with the 

earliest 80% of observations used for training and the most 

recent 20% reserved for testing. This prevents temporal 

leakage and better reflects a real-world forecasting scenario. 

Hyperparameter tuning was not the primary focus of this 

research, as the study emphasizes benchmarking rather than 

optimization. Accordingly, default configurations were 

employed for Random Forest, XGBoost, and Prophet, while 

ARIMA was fixed at an order of (5,1,0). For the LSTM 

model, limited manual iterations were conducted to balance 

accuracy and efficiency, resulting in a two-layer architecture 

with 50 units each, a dropout rate of 0.2, a batch size of 32, 

and 100 epochs with EarlyStopping (patience=10). Before 

applying ARIMA, the stationarity of the series was verified 

using the Augmented Dickey–Fuller (ADF) test, with 

differencing applied when necessary; Prophet and ARIMA 

were not fully optimized, as the focus was on methodological 

benchmarking rather than parameter fine-tuning [1][2]. 

The models are all trained and examined on a consistent 

data split to provide comparable performance comparisons. 

Repeatability and scale investigations are made possible by 

the single pipeline the fact that automates the training 

technique. Throughout training, each model predicts the 

predicted horizon using out-of-sample data. Beyond this, the 

predictions undergo the evaluation phase, when their 

accuracy, consistency, and comparative behavior are assessed 

[41][42]. 

 

E. Performance Evaluations 

Performance evaluation is the next essential aspect in the 

framework, particularly is displayed in Figure 1, after 

expectations have been generated employing both traditional 

and AI-based models. This phase measures each model's 

suggested accuracy, dependability, and comparative behavior 

along a variety of analytical parameters. This evaluation is 

organized into three primary elements in order to attain this: 

(a) Primary Metrics, (b) Robustness Analysis, and (c) 

Intermodel Analysis. Collectively, these three elements 

constitute an in-depth evaluation of each model's performance 
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in terms of both practical effectiveness and precision in 

forecasting. 

Primary metrics are used to evaluate predictive accuracy, 

providing direct comparisons between the predicted values 

y ̂_t and the actual observed values y_t over the forecasting 

horizon t=1,2,…,n. The following standard error-based 

formulations are employed. 

• Mean Absolute Error (MAE) calculates the average size 

of a series of forecasts' mistakes without implementing 

consideration of their direction. The mean of the 

absolute discrepancies between the expected and actual 

outcomes will be utilized to compute it. The MAE is 

relatively easy to understand and provides a linear score, 

which indicates that each individual error is given an 

equal weight [3]. 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑡 − 𝑦̂𝑡|

𝑛

𝑡=1

                          (1) 

• Root Mean Squared Error (RMSE), in contrast, 

discourages greater deviations more severely by 

squaring each mistake before averaging. Because it is 

sensitive to outliers, RMSE is especially helpful in 

predicting applications where big errors are undesirable 

[4]. 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ |𝑦𝑡 − 𝑦̂𝑡|

𝑛

𝑡=1

                   (2) 

• Coefficient of Determination (R²) determines the 

percentage of the observed data's variation that the 

model can account for. Better model fit is indicated by 

an R2 value around 1, whereas low explanatory power 

can be determined by a value close to 0. It is an 

advantageous supplement to absolute error metrics such 

as RMSE and MAE [5]. 

𝑅2 = 1 −
∑ (𝑦𝑡 − 𝑦̂𝑡)2𝑛

𝑡=1

∑ (𝑦𝑡 − 𝑦̅𝑡)2𝑛
𝑡=1

                      (3) 

• Mean Absolute Percentage Error (MAPE) depicts the 

average absolute inaccuracy in comparing with actual 

values and represents predicting accuracy as a 

percentage. Although MAPE is scale-independent, it 

may be utilized for comparing models across other 

currencies or datasets when 𝑦𝑡  is close to zero  [6]. 

𝑀𝐴𝑃𝐸 =
100%

𝑛
∑ |

𝑦𝑡 − 𝑦̂𝑡

𝑦𝑡

|

𝑛

𝑡=1

               (4) 

• Symmetric Mean Absolute Percentage Error (SMAPE) 

adjusts MAPE to account for asymmetry in over- and 

under-forecasting. It is especially valuable in financial 

forecasting, where percentage deviations can be 

misleading if not normalized symmetrically when actual 

or predicted values are near zero [7]. 

𝑆𝑀𝐴𝑃𝐸 =
100%

𝑛
∑

𝑦𝑡 − 𝑦̂𝑡

(|𝑦𝑡| + |𝑦̂𝑡|) 2⁄

𝑛

𝑡=1

  (5) 

All of these metrics, which each describe an individual 

component of model error behavior, operate well together to 

provide an accurate foundation for evaluating the average 

prediction performance among models. 

The following evaluation component tackles this by 

focusing on robustness analysis, which analyses how robust 

and accurate model predictions are regardless of noise, 

volatility, or outliers, all of which are common in financial 

time series such as Bitcoin. This stage of analysis revolves on 

non-parametric, distribution-sensitive measures: 

• Median Absolute Error (MedAE) is similar to MAE, 

except it estimates the median rather than the mean of 

absolute errors. This makes it less susceptible to extreme 

values and more appropriate for capturing the core 

pattern of prediction errors in volatile settings [8][9]. 

 

𝑀𝑒𝑑𝐴𝐸 = 𝑚𝑒𝑑𝑖𝑎𝑛(|𝑦𝑡 − 𝑦̂𝑡|)             (6) 

 

• Interquartile Range (IQR) measures the spread of errors 

by calculating the range between the 25th and 75th 

percentiles. A lower IQR indicates that the model 

produces more consistent predictions, even if its mean 

error is not the lowest [10][11]. 

𝐼𝑄𝑅 = 𝑄3 − 𝑄1                                         (7) 

 

Where 𝑄1 and 𝑄3 are first and third quartiles of the 

absolute errors. A smaller IQR indicates that most errors 

fall within a narrow, predictable range as an indicator of 

model stability 

• Outlier Threshold or Sensitivity refers to a model's 

tendency to produce large errors when encountering 

anomalous or extreme market behaviors. This is 

assessed by identifying the frequency and severity of 

prediction errors that lie beyond statistical thresholds 

(e.g., above 1.5× IQR). Models that maintain stable 

performance despite such events are considered more 

robust [12][13]. 

 

𝑂𝑢𝑡𝑙𝑖𝑒𝑟 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 =  𝑄3 + 1.5 × 𝐼𝑄𝑅                             (8) 

 

Robustness analysis is essential in financial applications 

where occasional large errors can have significant real-world 

implications, especially in risk-sensitive decision-making. 

The last assessments component is intermodel analysis, 

allowing analysts to better understand how models connect to 

one another in terms of predictive behavior. In contrast to 

focusing solely upon absolute performance, this phase 

focuses for similarities, differences, and clustering patterns 

between models, revealing meta-level insights into how 

forecasting systems compare as ensemble. 

• Pairplots are Intended to display pairwise correlations 

between model predictions. Pairplots assist to figure out 

whether particular predictions consistently agree or 

diverge through contrasting predicted values against one 

other. Robust Pearson correlations across models can 

imply redundancy, but orthogonal behavior can point to 
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complementing modeling approaches ideal for 

assembling [14][15]. 

• Dendrograms are produced by hierarchical clustering 

and group models based on the Euclidean distance (or 

other similarity measures) between their prediction 

vectors. The dendrogram structure assists in identifying 

natural groupings among models, which is vital to 

figuring out model families, selecting fluctuated 

ensembles, and understanding which modelling 

methodologies provide unique forecasting defining 

features [16][17]. 

These intermodel tools not only enable performance 

benchmarking, but they additionally provide pertinent tactical 

understanding into the interactions between different 

forecasting paradigms in science. 

The research effort confirms a thorough and equitable 

evaluation of forecasting performance through the integration 

of these three levels of assessment: intermodel analysis, 

robustness checks, and primary accuracy metrics. This 

multimodal assessment directly contributes to the data science 

framework's last phase, when model outcomes are converted 

into practical recommendations for decision-makers. 

F. Information and Recommendation Pathways 

The synthesis of findings and creation of technical 

recommendations constitute the last phase of the suggested 

technique, which is depicted at the bottom of Figure 1. For 

practitioners, analysts, and decision-makers intending at 

applying forecasting approaches in practical financial 

contexts, especially in the volatile and high-impact field of 

cryptocurrencies, this phase serves as essential for integrating 

complex model outputs into helpful guidance. 

This Information and Recommendation Framework 

provides structured, technical pathways for growing the 

forecasting system in both academic research and real-world 

financial applications, in spite of analyzing model 

performance. It completes the end-to-end hybrid forecasting 

methodology recommended in this study and functions as the 

pipeline's last output. 

 

III. RESULTS AND DISCUSSIONS 

A. Overview Observations 

The current investigation applies a consistent setting for 

experiments for all tests in order to determine the forecasting 

capacity utilization provided by various models. Models are 

trained on a 60-day historical window and handed the task of 

forecasting the upcoming 30 days. The prediction task has 

been structured using a rolling-window framework. Through 

modeling the sequential nature of financial data, this 

windowing approach enables a realistic simulation of time 

series forecasting. 

The dataset covers 517 daily Bitcoin price evaluations from 

January 1, 2020, to December 31, 2024. To determine the 

implications of data distribution on forecasting accuracy, the 

models were trained using two differing feature 

representations: the raw feature set (in absolute price scale) 

and a log-transformed version. 

Three traditional statistical techniques—Linear Regression, 

ARIMA, and Prophet—as well as four artificial intelligence 

(AI)-based techniques—Random Forest, XGBoost, and 

LSTM—were deployed to develop and analyse seven 

forecasting models. A total of 14 experimental configurations 

are generated by applying each model separately to both 

feature sets. As mentioned in the following sections, a 

thorough set of assessment evaluates and visual analyses have 

been employed to evaluate each model's performance. 

 

B. Predictive Visualization 

Two important graphs are shown in this part to give a visual 

evaluation of the model's performance. Both in terms of trend 

alignment and predictions for the future, these visualizations 

serve as proof of the way precisely each forecasting model 

represents the actual structure of the Bitcoin price.  

Figure 2 shows a plot matching the actual Bitcoin prices 

over the evaluation period with the projected figures obtained 

from each model. By superimposing forecasts from every 

model on a single timeline, this line diagram provides it 

possible to compare the extent to which each model tracks the 

actual market moves. Effectively tracking both upward and 

downward movements with little latency, models like LSTM 

and XGBoost indicate a high degree of alignment with the real 

price curve. In contrast, simpler linear techniques, such as 

Linear Regression, tend to smooth out variations and are 

unable to adjust to abrupt market movements. 

 

 
Figure 2. Prediction alignment across models 

 

The potential of each model for forecasting 30 future data 

points based on the most recent 60-day input window can be 

observed more thoroughly in figure 3. The pattern and spatial 

distribution of forecasts across numerous models has been 

highlighted in this figure. The best-performing models, 

LSTM and XGBoost in particular, show subtle sensitivity to 

the current trend and generate predictions that correspond to 

the underlying momentum of the price data. Prophet tends to 

generate conservative projections and regularly ignores 

unexpected directional alterations, despite being typically 

reliable at discerning trend and seasonality. Beyond 

consistent conditions, Random Forest and ARIMA indicate 

limited extrapolation power, which might contribute to 

predictions becoming either flat or lag. 
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Figure 3. Forecasting trajectory all models 

 

All things considered, LSTM and XGBoost appears to be 

more efficient at detecting both the broader trend and the 

short-term volatility. Their natural ability for representing 

intricate, nonlinear temporal relationships may have been a 

consequence of this. Whereas ARIMA and Linear Regression 

have difficulty able to adapt to irregular price behavior, 

Prophet does an adequate task of capturing smoother trends 

[4][33][38]. 

C. Primary Metrics Evaluation 

Model performance had been assessed using five error 

metrics: Mean Absolute Error (MAE), Root Mean Squared 

Error (RMSE), Coefficient of Determination (R²), Mean 

Absolute Percentage Error (MAPE), and Symmetric Mean 

Absolute Percentage Error. The above indicators combine for 

evaluating prediction accuracy, error magnitude, and 

consistency across all models. 

 

 
TABLE 1.  

PERFORMANCE METRICS SUMMARY (ABSOLUTE FEATURE SET) 

Model MAE (↓) RMSE (↓) R² (↑) MAPE (%) (↓) SMAPE (%) (↓) 

Linear 21.37 M 29.93 M 0.984 2.022 2.031 

Random Forest 101.92 M 196.50 M 0.294 7.598 8.586 

XGBoost 105.86 M 198.03 M 0.283 7.988 8.998 

LSTM 24.58 M 33.64 M 0.979 2.278 2.288 

ARIMA 21.31 M 29.72 M 0.984 2.020 2.026 

Prophet 90.68 M 106.75 M 0.791 8.559 8.447 

 

The models in Table 1 with the lowest MAE and RMSE 

values in the above table are the Linear Regression and 

ARIMA models, which both have remarkably comparable 

accuracy scores. A strong match to the data is indicated by the 

similarities in their best R2 score of 0.984. Interestingly, 

LSTM gets a high R2 of 0.979 and low percentage-based 

errors (MAPE and SMAPE about 2.28%), indicating that it 

reflects the pattern well, but with some divergence in 

magnitude, although experiencing slightly larger absolute 

erroneous. In the present research, Random Forest and 

XGBoost, on the other hand, behaved poorly. Both have 

significant absolute and percentage errors, as well as low R² 

values, implying that they are unable to adequately express 

the temporal structure of the data, presumably due to its 

nonsequential nature. Prophet outperforms the tree-based 

models, but it is still behind the top three. 

Figure 3 demonstrates the absolute prediction errors for all 

models. Models such as Linear, ARIMA, and LSTM have 

smaller and more centered error distributions, which 

facilitates the numerical evaluation. XGBoost and Random 

Forest show greater spreads and higher average mistakes. 

Figure 4 depicts the prediction error distributions for each 

model in normal scale, enabling an obvious comparison of 

how each model's forecasts differ from actual values. Linear 

Regression and ARIMA again stand out, with error 

distributions that are narrower and more symmetric, centered 

at zero. LSTM follows with a little larger but still constrained 

distribution. 

 

 
Figure 4. Absolute Error Distribution 

 

 
Figure 5. Prediction Error Distribution 

 

Tree-based models, such as Random Forest and XGBoost, 

reveal substantial bias and variance, causing lower R² values. 

The calculations and graphics clearly suggest that Linear 

Regression, ARIMA, and LSTM are the most dependable 
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models for forecasting Bitcoin values in this study, with 

LSTM providing a competitive nonlinear alternative to AI 

algorithms [6][56]. 

 

D. Robustness Analysis 

Traditional evaluation metrics provide valuable insights 

into overall model correctness, whereas robustness indicators 

provide a more in-depth understanding of the stability and 

consistency of each model's predictions under numerous 

circumstances. This section evaluates the Median Absolute 

Error (MedAE), Interquartile Range (IQR), and number of 

prediction outliers, featuring three relation error distribution 

visualizations to support the analysis. 

 
Figure 6. Absolute Error (normal scale) 

 

The distribution of absolute errors for each model on the 

original (linear) scale can be observed in this boxplot in figure 

6. With modest median values and comparatively limited 

error bands, the Linear and ARIMA models tend to function 

steadily with few dramatic departures. On the other hand, the 

error ranges of Random Forest, XGBoost, and Prophet are 

greater, indicating more variability and either overfitting or 

undergeneralization. 

 

 
Figure 7. Absolute Error (log scale) 

 

Figure 7 demonstrates changes in performance across small 

and large error ranges by displaying errors on a logarithmic 

scale. The log transformation compounds disparities between 

models with significant outliers. The compactness of ARIMA 

and Linear models becomes more apparent here, whereas the 

distributions of tree-based models such as XGBoost and 

Random Forest show a strong rightward skew, indicating a 

higher proportion of high-error circumstances. 

This enhanced version incorporates median lines (Figure 8), 

allowing for a direct visual comparison of central error 

patterns between models. Notably, ARIMA has the lowest 

MedAE (14.37M), followed by Linear Regression (14.55). 

These findings are in accordance with their consistent 

predictive performance. In contrast LSTM has a fairly high 

MedAE (56.65M) despite great average metric performance, 

indicating some significant mispredictions that interfere with 

error consistency. Prophet, however having a high MedAE 

(83.12M), has a very low number of outliers (3), signaling that 

its oversights are regularly enormously but less irregular. 

The most reliable models, as shown by the results of our 

research of Table 2, are ARIMA and Linear Regression, that 

maintain a low median error with a narrow IQR and few 

outliers. On the other hand, Random Forest and XGBoost are 

less predictable under volatile market situations due to their 

high unpredictability and frequent outliers. Although LSTM 

exhibits great promise, it might need to be further improved 

to lower exceptionally large prediction errors [48][56]. 

 

 
Figure 8. Absolute Error with Median 

 

TABLE 2.  

SUMMARIZES THE ROBUSTNESS ANALYSIS 

Model MedAE  IQR Outliers Threshold 

Linear 14.37 M 23.37 M 19 

Random Forest 14.55 M 24.11 M 17 

XGBoost 33.45 M 63.98 M 44 

LSTM 36.00 M 64.34 M 44 

ARIMA 56.65 M 61.96 M 19 

Prophet 83.12 M 77.40 M 3 
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E. Intermodel Correlation and Agreement 

An intermodel research has been conducted in order to get 

a greater comprehension of the forecasting models' 

interactions beyond each measurement. This provides 

structural grouping, error behaviors, and prediction alignment 

comparisons. These results have significance when 

determining whenever particular frameworks could be 

absorbed satisfactorily and whether they behave similarly, 

neither of which are needed to generate dependable ensemble 

or hybrid systems. 

The Pearson correlation coefficients between each model's 

anticipated values and the actual closing prices of Bitcoin are 

presented in Figure 9. remarkably, the models that perform 

greatest across critical evaluation metrics are the ARIMA and 

Linear Regression models, which additionally exhibit the 

strongest correlations with the actual information. 

Furthermore, LSTM demonstrates a substantial correlation, 

revealing that it might detect widespread trend patterns in 

spite of its complex architecture. Random Forest and 

XGBoost, whereas exhibit a slightly lower correlation with 

the real series, which could indicate overfitting to local noise 

or a less effective understanding of the underlying market 

direction. 

 
Figure 9. Correlation of Predicted and Actual Values 

 

The correlation of absolute error magnitudes among models 

can be observed in Figure 10, which provides additional 

insight into the behavior of model mistakes. Models are likely 

to make mistakes on the same observations if there are several 

high correlations in this matrix. As expected, given their 

similar tree-based architecture, XGBoost and Random Forest, 

for example, reveal a substantial degree of error correlation. 

However, because both ARIMA and linear models depend 

upon trend-driven statistical concepts, they also have 

important error similarities. Interestingly, Prophet and LSTM 

seem to have less overlap in their error profiles and are more 

independent, which shows that they could potentially be 

effective when recognizing various aspects of the data when 

applied in a mixed ensemble arrangement. 

Figure 11 illustrates a visual comparison of model 

predictions against the actual values and each other utilising 

a matrix of scatter plots and distributions to support the results 

presented. Each model's prediction distributions are 

represented by the diagonal elements, and the associations 

among each model's predictions are indicated by the off-

diagonal elements. Strong visual alignment with the real 

series has been shown by ARIMA, Linear, and LSTM, which 

generate narrow, focused patterns. The more scattered 

patterns generated by Random Forest and XGBoost, on the 

contrary hand, emphasize their greater variability and 

possible instability in specific circumstances. 

 

 

 
Figure 10. Correlation of Model Error Magnitudes 

 

 
Figure 11. Pairplot of Model Prediction and Actual Prices 

 

A scatter matrix of absolute errors across models can be 

seen in Figure 12 to better examine this variability. It is 

readily apparent that Linear Regression and ARIMA 

consistently produce more focused and lower error values, 

indicating more reliable performance. XGBoost and Random 
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Forest, on the reverse side, exhibit important co-variability 

and broader distributions, emphasizing their tendency to 

make similar types of mistakes. Prophet's appropriately 

compact and uniform dispersion, notwithstanding its huge 

error numbers, reflects underfitting rather than failure to 

perform. 

 

 
Figure 12. Scatter Matrix of absolute Error Models 

 

The models ultimately are grouped hierarchically according 

to their behavior in Figure 13. The way models cluster based 

on error structures or prediction similarity is illustrated by this 

dendrogram. The restricted grouping of Linear Regression 

and ARIMA confirms their similar performance patterns and 

similar methodological foundations. Furthermore, Random 

Forest and XGBoost indicate a parallel in their ensemble-

learning approach and high-variance results, constituting a 

separate cluster. With the integration of temporal dynamics 

and trend-capturing influence, LSTM is located in the middle 

of those classifications. But Prophet is set apart from the 

others, which emphasizes its distinctive behavior and slightly 

distinct forecast profile. 

 

 
Figure 13. Similarity Dendogram among Absolute Error between Models 

In the final analysis, this intermodel research not only 

validates the higher dependability of ARIMA, Linear, and 

LSTM models, but also demonstrates their complementing 

tendencies, making them excellent candidates for ensemble 

integration. Models such as XGBoost and Random Forest, by 

contrast, are different but frequently overlap and require 

careful calculation because to their volatility and shared 

constraints. These structural insights are useful for enhancing 

forecasting systems using model selection or hybridization 

methods [57]. 

 

F. Interpretation and Insights 

The comprehensive evaluation across numerous 

performance characteristics indicates ARIMA and Linear 

Regression are the most consistently dependable models for 

short-term Bitcoin price forecasting in this study. Both 

models perform adequately across all key factors, with low 

MAE and RMSE, high R² values, and insignificant 

percentage-based errors (MAPE, SMAPE). Their 

performance is further supported by excellent error 

distribution patterns (as depicted in the boxplots and absolute 

error visualizations), characterized by low median absolute 

errors, narrow interquartile ranges (IQR), and few outliers. 

These properties reveal that both ARIMA and Linear 

Regression generate dependable forecasts with little 

volatility, making them ideal for applications required 

interpretability and stability, such as financial monitoring or 

risk-sensitive trading approaches. 

LSTM provides significant strength in capturing non-linear 

patterns and short-term temporal dynamics, although slightly 

lagging beyond ARIMA and Linear in terms of raw accuracy. 

In both current and upcoming circumstances, its prediction 

curves nearly match actual prices. Nevertheless, there are 

some trade-offs associated with its performance. LSTM is 

more sensitive to the volume and quality of data, requiring 

more intricate hyperparameter adjustment, and takes longer to 

train. Due to this, it is more suitable for circumstances in 

which there are ample computational resources and prevalent 

datasets available, particularly for modeling more volatile or 

non-linear market segments. Random Forest and XGBoost, 

on the other hand, indicate low reliability despite their 

potential advantage in dealing with high-dimensional, non-

linear data. These models underperform in practically each 

measurement and produce greater, more unpredictable errors. 

They additionally exhibit a significant inter-model error 

correlation, showing that deficiencies are comparable across 

data points. This redundancy, along with excessive volatility, 

lowers their standalone worth. However, they may still be 

useful in ensemble settings where each particular modeling 

architecture states unique perspectives. Whereas Prophet was 

constructed for trend-seasonality decomposition, it behaved 

inadequately in the majority of evaluations in this study. It 

provides relatively high MAE, RMSE, and error percentages, 

but its correlation with actual data and other models is limited. 

Nonetheless, Prophet demonstrates consistent behavior and 

minimal variance in some robustness indicators (e.g., low 
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outlier count), rendering it potentially acceptable for 

fundamental trend forecasting tasks in less time-sensitive or 

high-resolution domains. 

In the final analysis, ARIMA and Linear Regression provide 

the optimum integrate of accuracy, durability, and simplicity, 

whereas LSTM adds value when modelling complexity or 

temporal depth must be considered. Meanwhile, tree-based 

models and Prophet could require more cautious deployment, 

preferably in hybrid or ensemble systems where their 

distinctive qualities can be carefully employed. These 

findings offer straightforward direction for practical 

implementation and prospective model development 

procedures. 

 

G. Implications and Recommendations  

The results imply that the determination of model should be 

in line with the objectives of forecasting and the 

characteristics of the data. Although it needs a lot of data and 

processing power, LSTM is best suited for capturing intricate, 

short-term dynamics. XGBoost is perfect for real-world 

deployment because it strikes a compromise between 

precision and efficiency. For rapidly, comprehensible results, 

traditional models like ARIMA and Linear Regression are 

still helpful, particularly in less volatile circumstances. 

Practitioners should consider log transformations to 

improve stability—especially for Prophet and XGBoost—and 

leverage robustness analysis to identify outlier-sensitive 

models. Given the diverse strengths across models, ensemble 

strategies could further enhance prediction reliability, 

particularly in volatile markets like cryptocurrency. 

IV. CONCLUSIONS 

The current research presents a comparative forecasting 

framework that predicts Bitcoin's daily closing price in IDR 

using classic statistical models (ARIMA, Linear Regression, 

Prophet) and AI-based approaches (Random Forest, 

XGBoost, LSTM). Our outcomes illustrate that AI models, 

particularly LSTM and XGBoost, excel at catching short-

term, non-linear patterns, with LSTM providing the highest 

accuracy despite higher computing costs. Traditional models 

such as ARIMA and Linear Regression, while less adaptable 

to volatility, are nonetheless competitive due to their 

simplicity and resilience. Robustness analyses and 

visualization tools (for example, forecast curves, error 

distributions, and intermodel correlations) highlight 

necessary trade-offs and identify potential for ensemble 

approaches.  

Finally, the research study not only depicts the intricate 

trade-offs between various forecasting methods, but also 

provides actionable advice for practitioners and academics. 

The suggested methodology can be applied to other highly 

volatile financial products, enabling better informed and 

robust decision-making in the rapidly transforming digital 

economy. Moreover, the comparative performance metrics 

reported in this study provide convincing numerical evidence 

of the framework’s reliability, reinforcing its value as a 

credible reference for both scholarly research and practical 

applications. Nonetheless, this study is limited to historical 

price data and does not account for external drivers such as 

macroeconomic variables or sentiment factors, which may 

significantly influence Bitcoin prices. Future extensions of 

the framework could incorporate these fundamental aspects to 

enhance predictive realism and broaden its applicability. 
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