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Sugarcane (Saccharum officinarum) is an important commodity in the sugar
industry, but it is vulnerable to leaf diseases such as Red Rot, Rust, Yellow Leaf, and
Mosaic, which can significantly reduce the quality and quantity of yields. Manual
identification is time-consuming and prone to subjective errors, therefore an
automatic detection method based on digital images is required. This study proposes
a combination of VGG16 pre-trained as a feature extractor with Support Vector
Machine (SVM) as a classifier. The dataset used is the Sugarcane Leaf Disease
Dataset from Kaggle, consisting of 2,521 images of five classes, which were then
balanced through augmentation in the form of rotation, zoom, and flipping to a total
of 3,000 images (600 per class). The preprocessing stage includes resizing the images
to 224x224 pixels and normalization using the preprocess_input function. Three
model scenarios were tested, namely SVM, VGG16, and VGG16+SVM. Evaluation
was carried out using two methods, namely an 80:20 train-test split and 10-fold
cross-validation, with metrics of accuracy, precision, recall, F1-score, G-Mean, and
AUC. The experimental results show that VGG16+SVM provides the best
performance with an accuracy of 99.60% on the 80:20 scheme, while on 10-fold
cross-validation the average accuracy is 80.76%. This value surpasses the baseline
SVM and VGG16 + Softmax, proving that the integration of VGG16 feature
extraction with SVM classification can produce stable and accurate performance.
This research contributes to the development of image-based plant disease detection
systems to support precision agriculture and fast decision-making.

This is an open access article under the CC-BY-SA license.

l. INTRODUCTION

Sugarcane (Saccharum officinarum) is one of the most
important agricultural commodities [1] and serves as the
primary raw material in the sugar industry [2]. As a major
sugarcane-producing country, Indonesia has a high demand
for optimal sugarcane production to meet national sugar
needs [3]. However, sugarcane productivity is often
threatened by leaf diseases [4] such as Red Rot, Rust, Yellow
Leaf, and Mosaic, which can significantly reduce harvest
quality [5],[6]. These diseases are generally characterized by
changes in color, shape, and specific patterns that can be
observed through digital images [7]. The use of digital image
processing technology has therefore become an important
solution for early disease detection [8]. One of the commonly

applied approaches is feature extraction, which aims to
capture essential information from images to represent object
characteristics. In the context of visual feature extraction, the
VGG16 deep learning model has proven effective in
extracting features from various image types [9],[10].
Research by [11]demonstrated that VGG16 achieved the
highest accuracy of 89.5% in citrus leaf disease detection,
outperforming models such as InceptionV3. In this study,
however, VGG16 is employed solely as a feature extractor,
utilizing the output from the convolutional base without the
fully connected layer, to obtain feature representations more
efficiently. The classification stage is performed using
Support Vector Machine (SVM), which, according to [12],
achieved the highest accuracy of 87% compared to other
algorithms. Building on these findings, this study combines

http://jurnal.polibatam.ac.id/index.php/JAIC


mailto:mufidahizza12@gmail.com
https://creativecommons.org/licenses/by-sa/4.0/

JAIC e-1SSN: 2548-6861

2297

the strength of VGG16 in feature extraction with the
robustness of SVM in classification to develop a more
efficient and accurate sugarcane leaf disease detection
system. Model performance is evaluated using accuracy,
precision, recall, F1-score, G-Mean, and ROC AUC metrics,
with validation carried out through both an 80:20 train—test
split and 10-fold cross-validation. This study is expected to
make a significant contribution to the development of an
automatic, fast, and accurate sugarcane leaf disease detection
system, while also supporting the productivity of the national
agricultural sector through the application of appropriate
artificial intelligence technologies.

Il. METHODS

This research was conducted following the stages shown
in Figure 1.

Start
Reference Sources
Literature Review (Tournal / Paper)

@)

Sugarcane Leaf Disease Dataset

Data Collecti d
B from Kaggle

Analysis

System Implementation

Model Evaluation

End

The research process began with a literature review of
various references, both national and international journals,
to gain an understanding of sugarcane leaf disease problems
and relevant detection methods. This was followed by the
collection of the Sugarcane Leaf Disease Dataset from
Kaggle, which consists of five leaf image classes (Healthy,
Red Rot, Rust, Yellow Leaf, and Mosaic). The dataset
underwent preprocessing, including resizing the images to
224x224 pixels, normalization using the preprocess_input
function, and augmentation techniques such as rotation,
flipping, and zooming to balance class distribution. The
system was then implemented by extracting features using the
pre-trained VGG16 architecture on the convolutional base
without the fully connected layer, after which the extracted
features were classified using the Support Vector Machine

(SVM) algorithm, known for its effectiveness in handling
high-dimensional data. Model evaluation was carried out

VGG16 Feature
Extraction + SVM

Classification

10-Fold Cross
Validation + Train -
Test

Accuracy, Precision,
Recall, F1 Score

|

Figure 1. Research Methods

using two validation methods, namely train—test split (80:20)
and 10-fold cross-validation, with performance metrics
including accuracy, precision, recall, F1-score, G-Mean, and
ROC AUC. This research workflow demonstrates the
systematic relationship between stages, and is expected to
produce an efficient, accurate, and reliable method for
sugarcane leaf disease detection.

A. Literature Review

At this stage, references were collected from journals,
articles, and other reliable sources. The purpose of this review
was to gain a deeper understanding of the fundamental
concepts of sugarcane leaf diseases, the transfer learning
technique (VGG16), and the Support Vector Machine (SVM)
classification algorithm.
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Figure 2. Find to References

B. Dataset

The dataset used in this study is the Sugarcane Leaf
Disease Dataset, which was downloaded from Kaggle.com
and consists of 2,521 sugarcane leaf images.

(a) Healthy

(d) Rust

Figure 3. Leaf Deases

The dataset includes five image categories representing
different leaf conditions, including healthy leaves and leaves
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infected with various diseases, namely Healthy, Red Rot,
Rust, Yellow Leaf, and Mosaic. The number of sugarcane
leaf images used for each class is presented in Table 1:

TABEL |
IMAGE CLASS

No. Class Image Count
1. Healthy 522

2. Red Rot 518

3. Rust 514

4, Yellow 505

5. Mosaic 462

C. Data Preprocessing
The preprocessing steps include:
1. Resize:

All images were resized to 224x224 pixels.

Visualisasi Preprocessing: Original vs Resize

Original Original

Original
o Mosaic

Rust Yellow

Original
RedRot

mo e

Resize (224, 224)
Healthy

Original
Healthy

Resize (224, 224) Resize (224, 224) Resize (224, 224)
Rust Yellow i

losaic

Resize (224, 224)
RedRot

Figure 4. Preprocessing

2. Data Augmentation:

The images in the dataset were first resized to 224x224
pixels, converted to arrays using img_to_array, and then
normalized using preprocess_input.

Augmentasi - Mosaic

Rotation width Shift Height Shift
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Brightness (Dark)

Brightness (Bright)

|

Channe! Shift

Lo N S

/

Figure 5. Preprocessing
Augmentation was performed using ImageDataGenerator
with transformations including rotation (20°), width and
height shifts, shear, zoom (0.1), horizontal flipping,

brightness adjustment (darker/brighter), and channel shifting.
The augmentation process was applied only to classes with
fewer than 600 images to balance the data distribution across
classes, preventing the model from being biased toward
classes with more samples.

TABEL Il
ORIGINAL DATASET

No. Category Image Count

1. Healthy 522

2. Red Rot 518

3. Rust 514

4, Yellow 505

5. Mosaic 462
Total 2.521

TABEL III

DATA AUGMENTATION

No. Category Image Count

1. Healthy 600

2. Red Rot 600

3. Rust 600

4, Yellow 600

5. Mosaic 600
Total 3.000

3. Normalization:
Normalization was performed using the

preprocess_input() function from TensorFlow to ensure
compatibility with the VGG16 format.

Pixel Sebelum Normalisasi Pixel Setelah Normalisasi (VGG16)
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Figure 6. Normalization
D. Data Splitting

Train
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Figure 6. Data Splitting
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TABEL IV . TP
NUMBERS OF DATA PER CLASS precision = TP + FP
Class Train Count | Test Count
0 Healthy 480 120 3. Recall: The model’s capability to detect all positive
1 RedRot 480 120 samples.
2 Rust 480 120 TP
3 Yellow 480 120 recall = —p——x
4 Mosaic 480 120
TABEL V 4. F1-Score: The harmonic average of precision and recall.
10-FoLb CROSS VALIDATION
2 x Precision x Recall
Fold Accuracy (%) F1 Score = —
1 0.84 Precision + Recall
g 8% 5. Confusion Matrix: A matrix showing the distribution of
2 0.79 predictions and actual labels for each class [13].
5 0,80 6. G-Mean: Measures the balance of model performance
6 0,78 in multi-class classification based on the geometric
7 0,85 mean of recall for each class[14].
8 0,77 7. ROC Curve and AUC: The ROC Curve illustrates
9 0,80 classification performance across various thresholds,
10 0,80 while the AUC (Area Under the Curve) quantifies the
Average 0,80 model’s ability to distinguish between classes[15].

E. System Implementation
1. Feature Extraction with VGG16

VGG16 is a deep learning architecture pre-trained on the
ImageNet dataset. In this study, the VGG16 model was
employed as a feature extractor, where the fully connected
layers were removed and only the convolutional base was
used. Features were extracted from the last output layer
(block5_pool) and then flattened into a fixed-dimensional
vector that represents the visual characteristics of the images.
2. SVM Classification Model Training

Classification was performed using the Support Vector
Machine (SVM) algorithm from the scikit-learn library. SVM
works by finding the optimal hyperplane that separates data
from different classes. The SVM parameters, such as kernel,
C, and gamma, significantly influence the model’s
performance.
3. Parameter Optimization with GridSearchCV

To achieve optimal performance, parameter tuning was
conducted using GridSearchCV. GridSearchCV is a
technique for finding the best parameters by testing all
specified combinations of parameters.

F. Model Evaluation
The model performance was evaluated using accuracy,
precision, recall, Fl-score, G-Mean, and ROC AUC,
calculated using the following formulas:
1. Accuracy: The percentage of correct predictions.

TP+TN
TP+TN+FP+FN

accuracy =

2. Precision: The model’s capability to accurately predict
positive instances.

G. The Proposed Model

Pre-trained Model

| Pre traized
: VGGIS

‘Elstraksi Fitwr |

Klasifikasi SVM

[rey || retra | haw | [velowier)| Mese | i

Figure 7. Proposed Model

The proposed model, as illustrated in the figure, represents
the workflow of the sugarcane leaf disease detection system
in this study. The process begins with dataset collection and
image preprocessing, followed by feature extraction using the
VGG16 architecture pre-trained on ImageNet. The extracted
feature vectors are then processed by the Support Vector
Machine (SVM) algorithm to classify the images into five
categories: Healthy, Red Rot, Rust, Yellow Leaf, and Mosaic.

I11. RESULTS AND DISCUSSION

A. Software and Hardware Requirements

All implementation processes were carried out on the
Google Colaboratory (Colab) platform, which supports
NVIDIA Tesla T4 GPU computing. The programming
language used was Python 3.x, with supporting libraries such
as TensorFlow, Keras, Scikit-Learn, NumPy, and Matplotlib.
The operating system employed was Windows 10 (64-bit) for
file management and integration with Google Colab. This
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hardware and software configuration was selected to ensure
efficient and stable computational performance.

B. Feature Extraction Results with VGG16

Feature extraction was performed using the pre-trained
VGG16 model with the fully connected layers removed,
leaving only the convolutional base. Each preprocessed
image was extracted into a 25,088-dimensional feature
vector, resulting in a total feature representation of size (3000,
25088) for the entire dataset.

C. SVM Model Training and Validation Results

Training was conducted using the SVM algorithm, chosen
for its capability to separate classes in high-dimensional
spaces. Parameter optimization (C, kernel, gamma) was
performed using GridSearchCV, which tested combinations
of parameters with 10-fold cross-validation to ensure stable
model performance and prevent overfitting.

During the training process of a Support Vector Machine
(SVM) model, several key parameters significantly influence
its performance and classification results. The C parameter,
ranging between [10, 100], serves as a regularization
parameter that controls the balance between the separating
margin and the training error. A higher C value tends to
produce a narrower margin but may increase the risk of
overfitting, while a lower value allows a wider margin with
greater tolerance for misclassification. Next, the Kernel
parameter determines the type of kernel function used to map
the data into a higher-dimensional space, with options such
as ‘rbf’, ‘poly’, and ‘sigmoid’. The choice of kernel greatly
affects the model’s ability to handle non-linear data. Lastly,
the Gamma parameter, which can take the values ‘scale’ or
‘auto’, controls how far the influence of a single training
example reaches. A higher gamma value makes the model
more focused on nearby data points (more sensitive to noise),
whereas a lower gamma value allows a broader influence
across the data space.

In this specific SVM configuration, the C parameter is set
to 100, meaning the model places a strong emphasis on
minimizing classification errors during training. A high C
value drives the model to create a tighter separating margin,
although it increases the risk of overfitting. The Kernel used
is Sigmoid, a type of kernel that operates with an activation
function similar to that used in neural networks, making it
suitable for capturing non-linear relationships among
features. Meanwhile, the Gamma parameter is set to Auto,
which automatically computes its value based on the number
of features in the dataset. This configuration helps the model
adjust the influence of each data point on others
proportionally to the complexity of the dataset.:

This combination of parameters achieved the highest
validation score and was used to train the final model, which
was subsequently evaluated.

D. Model Performance Comparison

TABEL VI
TRAIN TEST 80:20

Model Accuracy | Precision | Recall scFoll:e AUC
SVM 93,12% 0,932 0,931 | 0,901 | 0,905
VGGI6+ | g1 9505 0,949 | 0,009 | 0,959 | 0,943
Softmax
VGG16 +
SVM 99,60% 0,996 0,996 | 0,996 | 0,995

100,00% e o e e o
98,00%
96,00% g -
94,00% [
92,00%
90,00%
88,00%
86,00%
84,00%
Akurasi Presisi Recall Fl-score AUC
ESVM VGG16 + Softmax VGG16 + SVM
Figure 8. Train Test 80:20
TABEL VII
10-FoLD CROSS VALIDATION
Fold SVM VGG16 + VGG16 +
Softmax SVM
1 0,72 0,75 0,80
2 0,73 0,76 0,80
3 0,71 0,74 0,78
4 0,72 0,75 0,79
5 0,73 0,76 0,80
6 0,71 0,74 0,78
7 0,74 0,77 0,85
8 0,70 0,73 0,77
9 0,72 0,75 0,80
10 0,73 0,76 0,80
Average 0,72 0,75 0,80

L

Figure 9. 10-Fold Cross Validation

E. Model Evaluation

The confusion matrix on the test data (80:20) illustrates the
distribution of correct and incorrect predictions for each class.
This visualization helps to assess the model’s performance in
more detail, particularly in distinguishing between sugarcane
leaf disease classes. In general, the confusion matrix is used
to evaluate classification performance by showing the
number of correct and incorrect predictions for each class.
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Figure 10. 10-fold cross-validation

Based on the 10-fold cross-validation results, the highest
accuracy was obtained in Fold 7, with a value of 0.85. This
score was the highest among all folds, indicating that Fold 7
can be considered the best representation of the SVM model’s
performance in classifying sugarcane leaf images.

F. Comparison with Previous Studies

TABEL VIII
PREVIOUS STUDIES
Framework Dataset | Model | Accuracy | Evaluation | Splitting
Sujatha et Daun VGG16 89% | Akurasi, -
al., 2021 Citrus (CNN) Precision,
F1 Score
Chiatra & Daun HOG + 96% | Akurasi, 10-Fold
Sabita, 2025 Tebu SVM Precision, Ccv
F1 Score,
10-Fold
CcVv
Proposed Daun VGG16 | 99,60% Akurasi, Train -
Method Tebu +SVM | (Train— Precision, Test
Test Recall, F1 | 80:20
80:20) Score, 10-Fold
80% (10- | AUC CcVv
Fold CV)

The table presents a comparison between previous studies
and the proposed method. Sujatha et al. (2021) applied end-
to-end VGG16 on citrus leaves, achieving an accuracy of
89%, while Chiatra & Sabita (2025) used HOG + SVM on
sugarcane leaves, obtaining 96% accuracy. The proposed
method in this study, VGG16 + SVM, achieved an accuracy
of 99.60% using an 80:20 train—test split and 80% with 10-
fold cross-validation.

G. Discussion of Results

The evaluation using the 80:20 train—test split scheme
showed that the combination of VGGL16 as a feature extractor
and SVM as a classifier achieved the best performance
compared to the baseline models. The VGG16 + SVM model
attained an accuracy of 99.60%, with average precision,

recall, and F1-score values of 0.996. The confusion matrix
visualization indicated that most predictions were on the main
diagonal, demonstrating the model’s strong ability to
distinguish between Healthy, Red Rot, Rust, Yellow Leaf,
and Mosaic classes. An AUC value of 0.995 further supports
the high consistency of the model in separating the classes.

For comparison, the pure SVM baseline model achieved
only 93.12% accuracy, while VGG16 + Softmax reached
90.95%. This difference highlights that integrating a pre-
trained CNN with SVM is superior in detecting complex
visual patterns in sugarcane leaf images compared to single
models. The application of data augmentation also played a
crucial role in increasing image variation and balancing class
distribution, preventing the model from being biased toward
certain classes.

These findings are consistent with Sujatha et al. (2021),
who reported that VGG16 has strong capability in feature
extraction for plant disease detection. However, unlike
previous studies using end-to-end VGG16, this study utilized
only the convolutional base as a feature extractor, resulting in
a more efficient approach without involving fully connected
layers.

IV. CONCLUSION

This study proposed a digital image-based method for
detecting sugarcane leaf diseases by combining VGG16 as a
feature extractor and SVM as a classifier. Using the 80:20
train—test split scheme, the proposed model achieved an
accuracy of 99.60%, with average precision, recall, and F1-
score of 0.996, and an AUC of 0.995. These results
demonstrate that the integration of VGG16 and SVM can
deliver very high performance in classifying sugarcane leaf
diseases, outperforming both the pure SVM baseline and
VGG16 + Softmax models. The main contribution of this
study is to validate the effectiveness of combining a pre-
trained CNN with SVM to support an automated sugarcane
leaf disease detection system. This method has the potential
to serve as a foundation for developing fast, efficient, and
accurate Al-based applications to support precision
agriculture practices. However, this study has limitations due
to the dataset being limited in size and sourced from a single
origin. Therefore, future research should test the model on
field data with greater environmental variation and consider
integrating it into mobile or IoT applications so that it can be
directly utilized by farmers.
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