
Journal of Applied Informatics and Computing (JAIC)

Vol.9, No.5, October 2025, pp. 2270~2277

e-ISSN: 2548-6861 2270

http://jurnal.polibatam.ac.id/index.php/JAIC

Comparison of Text Vectorization Methods for IMDB Movie Review

Sentiment Analysis Using SVM

Rifqi Mulyawan 1*, Husni Naparin 2*, Wifda Muna Fatihia 3*
* Information Technology, UIN Antasari Banjarmasin

rifqi.mulyawan@uin-antasari.ac.id 1 parinhusnina@uin-antasari.ac.id 2, wifdamunafatihia@uin-antasari.ac.id 3

Article Info ABSTRACT

Article history:

Received 2025-07-22

Revised 2025-09-01

Accepted 2025-09-03

 Sentiment Analysis is a scientific study in the field of Machine Learning that focuses

on classifying opinions expressed in text. IMDb is a platform widely used to provide

information and share viewpoints among moviegoers worldwide, where audience

reactions often serve as a benchmark for a movie’s success. This research aims to

classify positive and negative sentiments by applying and evaluating the

effectiveness of Support Vector Machine (SVM) with four different feature

representation methods: (a) Bag of Words (BoW), (b) TF-IDF, (c) Word2Vec, and

(d) Doc2Vec. After preprocessing the textual data, each method was employed to

extract features for model training. The experimental results demonstrate that the

combination of SVM with Word2Vec achieved the best overall performance with an

F1-Score of 0.8607 and an Accuracy of 0.8607, while also being the fastest in

training time (75.0s). In comparison, BoW reached an F1-Score of 0.8219, TF-IDF

achieved 0.8520, and Doc2Vec obtained 0.8440. These findings highlight that

Word2Vec provides the most effective feature representation for sentiment

classification using SVM in this study.

Keyword:

Bag of Words,

Doc2Vec,

TF-IDF,

Support Vector Machine,

Word2Vec.

This is an open access article under the CC–BY-SA license.

I. INTRODUCTION

Over the past ten years, the rapid growth of the web has

transformed how people share their thoughts and opinions.

Nowadays, user opinions are widespread and accessible

across numerous online platforms, including news websites,

personal blogs, social media, discussion boards, and review

sites. This shift has led to an overwhelming surge of user-

generated content flooding the internet. Catching popular

opinion about any social events, movement of national

politics, company technique, advertising projects, and also

product preferences amasses increasing interest from the

clinical area (for tremendous open difficulties), and also from

the business globe (for notable advertising failures for

feasible market predictions of finance) [1].

Today, assessing and sharing experiences concerning

products and services is a prevailing practice. Opinion mining

has gained significant focus from the community study in

recent years because of its big-data relevance [2], many

challenging research issues, and useful applications in both

commerce and the academic community.

Sentiment analysis, often referred to as opinion mining,

involves the process of identifying, classifying, and extracting

subjective information and opinions related to a specific

subject. A central challenge in this area lies in determining

sentiment polarity—categorizing opinions as positive or

negative—which may appear at the document, sentence, or

feature level. This field draws upon techniques from data

mining and Natural Language Processing (NLP) to uncover

sentiments expressed in textual content, primarily found

online [3]. Numerous methods and strategies have been

proposed by researchers to improve the accuracy and

effectiveness of sentiment analysis tasks. The general concept

of categorizing views from messages is to designate

"positive" or "negative" (or even "neutral") labels for blocks

of text (papers, sentences, reviews, etc.).

Research [4] was the very first to propose sentiment

classification utilizing machine learning designs. They

analyzed the Naïve Bayes, Max Entropy, and SVM versions

for view evaluation on unigrams as well as bigrams of

information. In their experiment, SVM matched with

unigrams generated very good results.

mailto:rifqi.mulyawan@uin-antasari.ac.id
mailto:parinhusnina@uin-antasari.ac.id
mailto:wifdamunafatihia@uin-antasari.ac.id
https://creativecommons.org/licenses/by-sa/4.0/

JAIC e-ISSN: 2548-6861

Comparison of Text Vectorization Methods for IMDB Movie Review Sentiment Analysis Using SVM

(Rifqi Mulyawan, Husni Naparin, Wifda Muna Fatihia)

2271

Mullen and Collier [5] utilized Support Vector Machines

(SVMs), and the feature set for document representation was

expanded by incorporating sentiment indicators derived from

a variety of external sources. Both of them introduced

functions based upon Osgood's Concept of Semantic

Differentiation [6] By leveraging WordNet, the values

associated with adjectives—such as their effectiveness,

intensity of action, and evaluative meaning—were extracted,

alongside the application of Turney’s semantic orientation

technique [4].

Support Vector Machine is superior in cases with datasets

that are not too large in number. In addition, SVM is effective

on data represented as text, as it can find the optimal

hyperplane that separates the classes with maximum margin

[7]. The Naïve Bayes algorithm is faster, but its accuracy is

often lower due to the assumption of word independence [8].

Research [9] proved that the SVM algorithm tested in the case

of sentiment analysis of IMDb review data achieved an

accuracy value of 86.5% with a precision value of 90.67% and

a recall value of 91.62%. Our research chose SVM as the

classification algorithm by considering some of the previous

studies mentioned earlier. From the aspect of accuracy value,

SVM provides a high accuracy value for text data, making it

suitable for data with thousands of words or significant

features. In addition, the IMDb dataset contains varied

opinions, but SVM can ignore irrelevant words, reducing

noise in the dataset processing.

As with other classification algorithms, the SVM model

operates on numerical data, meaning that every record in the

training set must undergo a vectorization process. Although

the basic BoW method often yields suboptimal results, its

improved counterpart—TF-IDF—offers better performance

by handling stop words and assigning a significance score to

each term [10]. However, both methods fail to capture

semantic features and ignore the sequence of words within a

phrase. To address these limitations, more advanced models

for numerical document representation—such as Word2Vec

[11] and Doc2Vec [12] —can be employed. Although both

models are computed in a similar manner, they offer slightly

different advantages. Word2Vec produces word embeddings

that are highly adaptable and transferable across various

domains, whereas Doc2Vec is more closely aligned with the

domain of the training data, thus providing deeper contextual

understanding. While Word2Vec offers greater flexibility

across datasets, Doc2Vec tends to perform better when

dealing with lengthy documents [13]. Nonetheless, both

neural network-based models are generally expected to

outperform traditional TF-IDF representations [14].

BoW, TF-IDF, Word2Vec, and Doc2Vec represent the two

main generations of text representation techniques so that the

research results can directly compare the performance of

traditional and modern approaches [15]. BoW and TF-IDF are

traditional approaches (frequency-based) that are fast, simple,

and suitable for baseline. Word2Vec and Doc2Vec are

modern approaches (neural embeddings) capable of

understanding context and semantic relations [16].

To validate our experiments, we adopt the widely used

“IMDb Movie Reviews” dataset and analyze whether deep

semantic representations outperform conventional heuristic

techniques like BoW and TF-IDF. We also investigate

whether using alternative classification algorithms may

further improve model performance. In this paper, we

compare and evaluate four methods for opinion mining using

the Support Vector Machine (SVM) algorithm on the IMDb

dataset. IMDb is a site that shares rating and review

information about films, TV programs, home videos, games,

streaming videos, and other celebrity content [17]. For

evaluation, we utilized IMDb's movie reviews dataset

retrieved from Kaggle. This study explores four different text

representation techniques: (a) Bag of Words, (b) TF-IDF, (c)

Word2Vec, and (d) Doc2Vec. Our primary goal is to develop

and evaluate SVM model configurations that aim to improve

both classification efficiency and effectiveness. As a first

step, we assess which text representation method yields the

most reliable performance while maintaining a reasonable

computational cost. To do this, we compare traditional

methods such as Bag of Words and TF-IDF with more modern

neural network-based representations like Word2Vec and

Doc2Vec, which stem from deep learning approaches. Deep

learning has increasingly become a valuable tool for decision-

makers, offering improvements in solving new challenges or

enhancing classical algorithms [18].

Implementation of different mixes of pre-processing

approaches can boost viewpoint classification and results.

Methods like BoW can link a message with a vector, revealing

the number of occurrences of each selected word in the

training corpus. It is frequently suggested to carry out a

comprehensive and systematic variety of pre-processing

strategies incorporated with category experiments, given that

it contributes to boosting the accuracy. According to [19], for

all the tested datasets, there was always a minimum of one

mix of fundamental pre-processing techniques that could be

advised to dramatically improve the text classification by

using BoW representation.

The remainder of this paper is structured as follows: the

next section discusses related work in the field, followed by

an explanation of the SVM model, implementation details,

vectorization strategies, experimental setup, and the results

obtained. The last section is devoted to experiments and

provides a brief verdict of our paper.

II. LITERATURE REVIEW

Support Vector Machines (SVMs) have earned a stellar

reputation in machine learning, consistently hailed as one of

the most precise and reliable discriminative classifiers. Their

theoretical backbone is rooted in the Structural Risk

Minimization (SRM) principle, a cornerstone concept from

computational learning theory that seeks to strike an optimal

balance between model complexity and generalization

performance. By rigorously minimizing the upper bound on

the true classification error, SVMs excel at delivering robust

 e-ISSN: 2548-6861

JAIC Vol. 9, No. 5, October 2025: 2270 – 2277

2272

predictions even in high-dimensional spaces. Beyond their

empirical prowess, these models are celebrated for their

mathematical elegance, offering a transparent framework that

facilitates in-depth theoretical scrutiny and intuitive

interpretation. Their versatility and interpretability make

SVMs a favorite among researchers and practitioners,

bridging the gap between abstract theory and real-world

applicability [20].

The proposed methodologies for extracting and

categorizing opinions from textual data can be broadly

classified into two dominant paradigms: machine learning

(ML)-based techniques and lexicon-driven approaches.

Machine learning methods leverage advanced algorithms to

automatically identify patterns and sentiments, often

requiring large annotated datasets for training. In contrast,

lexicon-based methods rely on predefined dictionaries of

sentiment-laden words and linguistic rules, offering greater

interpretability but sometimes lacking adaptability. While ML

approaches excel in handling complex, context-dependent

language, lexicon-based systems provide a more transparent

and rule-governed framework, making them suitable for

domains with well-defined sentiment expressions. This

dichotomy highlights the trade-offs between scalability and

explainability in opinion mining tasks [20].

The first approach frames opinion mining as a traditional

text classification task, employing machine learning

algorithms that harness a combination of syntactic structures

(e.g., word order, grammar) and linguistic features (e.g.,

sentiment-laden terms, negation patterns) to discern

subjective expressions. These models learn from annotated

datasets, enabling them to generalize and predict sentiment

labels for unseen text accurately.

In contrast, the second approach adopts a lexicon-based

strategy, relying on curated dictionaries where words and

phrases are pre-assigned polarity values (e.g., positive,

negative, neutral intensity scores). This method applies rule-

based systems to aggregate sentiment indicators, often

incorporating modifiers (e.g., "very," "not") to adjust final

sentiment scores. While less data-dependent than ML,

lexicon-based techniques require meticulous lexical resource

construction and may struggle with domain-specific or

context-dependent language.

Supervised machine learning techniques, including

Support Vector Machines (SVM), fundamentally rely on

labeled training datasets encompassing positive and negative

sentiment examples. These datasets empower the SVM to

determine an optimal decision boundary—formally termed a

hyperplane—within an n-dimensional feature space, thereby

maximizing the separation margin between the two classes.

The most critical data points, or support vectors, reside closest

to this hyperplane and directly influence its positioning. A

remarkable property of SVMs is their robustness to non-

support vectors: even if documents distant from the boundary

are omitted during training, the model’s performance remains

unaffected mainly, as the support vectors solely define the

hyperplane. This efficiency underscores SVMs’ capability to

generalize well, even with sparse but strategically selected

data [21].

Figure 1. SVM Hyperplane Creation

Support Vector Machines (SVMs) remain among the most

widely used classification models, with applications spanning

text processing, image categorization, and handwritten

character recognition. The original SVM formulation was

introduced in 1993, based on theoretical foundations

established roughly three decades earlier by Vapnik and

Chervonenkis. At its core, the SVM model seeks to separate

data into two primary classes using a linear classifier.

As we can see above (Fig. 1), let the input data be denoted

as x ∈ ℝᵈ, where each instance is assigned a label yᵢ ∈ {−1,

+1} for i = 1, 2, ..., n, with n representing the total number of

samples. If the two classes are linearly separable in a d-

dimensional space, the decision boundary—also known as a

hyperplane—can be expressed as [22]:

𝑤ᵗ𝑥 + 𝑏 = 0 ()

Because the hyperlane divide two locations based on each
other class, so each 𝑥𝑖 the sample that belongs −1 dan +1 class
will not fulfill the equation:

For 𝑦
𝑖

= −1:

 𝑤. 𝑥𝑖 + 𝑠 ≤ −1 ()

For 𝑦
𝑖

= +1:

 𝑤. 𝑥𝑖 + 𝑠 ≤ +1 ()

So that the two equal margins can be calculated by
subtracting equations (2) and (3), and then [23] we can get the
following equation:

 𝑤. (𝑥1− 𝑥2) = 2 ()

[
𝑤

‖𝑤‖
(𝑥1− 𝑥2)] =

2

‖𝑤‖
 ()

The fundamental objective of margin maximization in
Support Vector Machines revolves around identifying the
most substantial possible separation boundary between
classes. This process involves carefully calibrating the spatial
gap separating the decision hyperplane from its closest
neighboring observations - those critical data specimens we

JAIC e-ISSN: 2548-6861

Comparison of Text Vectorization Methods for IMDB Movie Review Sentiment Analysis Using SVM

(Rifqi Mulyawan, Husni Naparin, Wifda Muna Fatihia)

2273

refer to as support vectors. From a computational standpoint,
we can transform this geometric pursuit into an elegant
mathematical formulation where we seek to reduce the
magnitude of the weight vector ‖w‖ to its minimal possible
value. This minimization must occur within strictly defined
parameters that guarantee accurate classification of every
training instance in our dataset.

When we express this optimization challenge in its purest
mathematical form, we arrive at the beautifully simple yet

profoundly significant expression
2

‖𝑤‖
 - a representation that

captures the inverse relationship between the weight vector's
magnitude and the margin size we aim to expand. This
problem can be expressed as a quadratic programming (QP)
task, aiming to determine the minimum point of a given
equation:

 𝜏(𝑤)𝑤
𝑚𝑖𝑛 =

1

2
 ‖𝑤‖2 (6)

With a constraint that must be satisfied according to the

following inequality:

 𝑦𝑖 (𝑥𝑖 . 𝑤 + 𝑠) − 1 ≤ 0, ∀𝑖 (7)

To solve the (4) and (5) problems, we can use the Lagrange

multiplier with the formula:

𝐿(𝑤, 𝑠, 𝑎) =
1

2
 ‖𝑤‖2 − ∑ 𝑎𝑖(𝑙

𝑖=𝑙 𝑦𝑖((𝑥𝑖 . 𝑤 + 𝑠) − 1)); (𝑖 = 1,2, … , 𝑛) (8)

Where 𝑎𝑖 is lagrange multiplier that has a bigger value than

0, 𝑎𝑖 ≤ 0. Take notice of the nature that the optimal gradient

𝐿 = 0, so (8) we can modify it as a maximization problem

which only consists of 𝑎𝑖 as following equating:

Maximized:

 ∑ 𝑎𝑖 −
1

2
∑ 𝑎𝑖𝑎𝑗𝑦𝑖𝑦𝑗𝑥𝑖𝑥𝑗

𝑙
𝑖,𝑗=𝑙

𝑙
𝑖=𝑙 (9)

Fulfilled equation:

 𝑎𝑖 ≤ 0(𝑖 = 1,2, … , 𝑙) ∑ 𝑎𝑖𝑦𝑖 = 0𝑙
𝑖=𝑙 (10)

The results of the above calculations will produce a
positive lagrange multiplier (𝑎𝑖) where later the correlated
data with 𝑎𝑖 It is called a support vector [24].

III. METHODS

A. Dataset

This study utilizes the IMDb movie reviews dataset

obtained from Kaggle, which originally consists of 50,000

samples with three columns: review, sentiment, and label. The

dataset is evenly distributed, comprising 25,000 positive

reviews (50.0%) and 25,000 negative reviews (50.0%). For

the purposes of this research, a subset of 15,000 samples was

selected. The data was subsequently divided into a training set

of 10,500 samples and a test set of 4,500 samples. Figure 2

shows the distribution of review lengths by character length.

Figure 2. Review Length Distributions

B. Data Preprocessing

Text represents a highly unstructured form of data that

requires substantial preprocessing before becoming suitable

for analysis. The complete process of cleaning and

standardizing textual data - removing noise and preparing it

for examination - is collectively known as text preprocessing.

As illustrated in Figure 3 and Figure 4's word cloud

visualization, raw text data typically contains numerous

uninformative elements that obscure meaningful patterns. Our

preprocessing pipeline consists of two primary stages: (1)

data inspection and (2) data cleaning. The cleaning phase

systematically removes elements irrelevant for review

classification, including punctuation, numerical values, and

special characters.

Additionally, we eliminate short function words (such as

"him," "all," and "the") that contribute minimal semantic

value, as their frequent appearance in the word cloud (Figure

3 and Figure 4) demonstrates their limited analytical utility.

The data then undergoes normalization, where derived word

forms (e.g., "like," "liking," "likable") are reduced to their

base forms ("like") through lemmatization before final

tokenization. This comprehensive preprocessing workflow,

visually evidenced by the transformation from Figure 3 and

Figure 4's initial word cloud to the cleaned version, ensures

our text data achieves optimal quality for subsequent analysis.

Figure 3 shows the positive word cloud movie review

vocabulary, while Figure 4 illustrates the negative word cloud

of movie review vocabulary.

Figure 3. Positive Word Cloud Movie Review Vocabulary

 e-ISSN: 2548-6861

JAIC Vol. 9, No. 5, October 2025: 2270 – 2277

2274

Figure 4. Negative Word Cloud of Movie Review Vocabulary

C. Modeling

Most classification algorithms operate on numerical data,

which requires textual inputs to be transformed into vector

representations before classification. Before this vectorization

step, raw text undergoes a preprocessing pipeline that

includes cleaning (removing punctuation marks, numbers,

and special characters) and lemmatization. In addition,

irrelevant words are filtered out through weighting schemes

such as TF-IDF or other frequency-based metrics. Figure 5

illustrates the block diagram of our text classification

pipeline, starting from the IMDb dataset of 15,000 reviews,

followed by preprocessing, feature extraction using BoW, TF-

IDF, Word2Vec, or Doc2Vec, and finally classification using

machine learning algorithms (e.g., SVM).

The dataset was split into a training set (70%, 10,500

samples) and a test set (30%, 4,500 samples) using stratified

sampling to preserve the original sentiment distribution. Four

approaches were employed for feature extraction. The Bag of

Words (BoW) method provides a simple frequency-based

representation of words, while TF-IDF applies weighted word

frequencies to account for document-level importance.

Word2Vec generates distributed vector representations that

capture semantic similarity between words, and Doc2Vec

extends this idea by producing document-level embeddings

using the Distributed Memory (DM) and Distributed Bag of

Words (DBOW) architectures.

The extracted features were then used to train machine

learning algorithms, primarily focusing on Support Vector

Machine (SVM with Linear kernel, C=1, probability=True,

random_state=42). We implemented a comprehensive

evaluation procedure measuring Accuracy, Precision, Recall,

and F1-score to ensure robust evaluation. Additionally,

training time was recorded to assess computational efficiency.

An important step in the methodology was threshold

optimization for probabilistic models. By testing thresholds

from 0.3 to 0.7, the system selected the optimal cutoff point

that maximized the F1-Score. It is ensured that the

classification results were not biased toward a fixed threshold

(0.5) but reflected the best achievable trade-off between

Precision and Recall.

Figure 5. Block Diagram of Text Classification Pipeline

Word2Vec creates meaningful word representations by

training a specialized neural network to predict word contexts

within a given text corpus. This innovative approach utilizes

two distinct but related neural architectures that differ

primarily in their prediction direction. The first architecture,

Continuous Bag of Words (CBOW), functions by predicting

a target word from its surrounding context words, operating

similarly to traditional N-Gram models but with greater

neural sophistication. The second architecture, known as

Skip-Gram (SG), reverses this prediction logic by using a

single input word to predict its likely context words.

Despite their different prediction approaches, both models

employ an identical fundamental structure: they contain a

projection layer (sometimes referred to as a hidden layer) with

linear activation that serves as the actual word embedding

space, followed by an output layer that uses a non-linear

activation function (typically softmax or a sampling-based

alternative) to generate probability distributions over the

vocabulary. This elegant architecture allows Word2Vec to

efficiently transform sparse word representations into dense,

low-dimensional vectors that remarkably capture semantic

and syntactic word relationships [25].

The model's weight optimization employs stochastic

gradient descent (SGD) enhanced by backpropagation, a

computationally efficient approach that iteratively adjusts

weights across both the output and hidden (projection) layers.

This training process transforms textual data into numerical

representations through two primary vectorization

approaches: concatenation, which preserves sequential

information by combining word vectors end-to-end, or

aggregation (typically averaging), which creates a composite

representation of multiple words. During this transformation,

the document corpus manifests in two distinct mathematical

spaces: at the output layer, words are distributed across a two-

JAIC e-ISSN: 2548-6861

Comparison of Text Vectorization Methods for IMDB Movie Review Sentiment Analysis Using SVM

(Rifqi Mulyawan, Husni Naparin, Wifda Muna Fatihia)

2275

dimensional probability space representing the vocabulary,

while the hidden/projection layer compresses each word's

semantic essence into a single, dense vector embedding. This

dual-space representation enables the model to maintain the

discrete, observable characteristics of words in the output

layer while capturing their continuous, latent relationships in

the embedding space. The backpropagation mechanism

carefully coordinates updates between these layers, ensuring

the emerging embeddings preserve both syntactic and

semantic word relationships as reflected in their original

textual contexts [26].

Building upon Word2Vec's successful architecture, the

Doc2Vec framework extends the concept of word

embeddings to entire documents through two specialized

neural network architectures: Distributed Memory (DM) and

Distributed Bag of Words (DBOW). Both models inherit and

adapt the fundamental patterns established by Word2Vec

while introducing document-level representations. The DM

model, analogous to Word2Vec's CBOW architecture,

generates predictions by analyzing a context window of

words supplemented with a unique document identifier. This

implementation maintains two separate weight matrices:

matrix W for word vectors and matrix D for document

vectors. During prediction, the model combines the document

vector (retrieved as a column from matrix D) with context

word vectors (from matrix W) through either averaging or

concatenation operations, creating a rich composite

representation that captures both word-level and document-

level semantics.

In contrast, the DBOW model adopts Skip-Gram's

predictive approach but operates at the document level, using

a document identifier as input to predict its constituent words.

This architecture proves particularly efficient as it does not

require word vector storage during inference. After the

training, the learned document vectors (columns in matrix D)

serve as ready-to-use numerical representations of entire

documents, eliminating the need for additional processing or

feature engineering. These document embeddings effectively

capture thematic content and contextual information, making

them immediately suitable for downstream tasks like

document classification, clustering, or similarity analysis

[13].

The pre-processed text data is transformed into model-

ready features, initially employing the Bag-of-Words (BoW)

technique, followed by Term Frequency–Inverse Document

Frequency (TF-IDF). To capture richer semantic information,

we adopt Word2Vec embeddings, which offer a refined

method of expressing words as vectors, compressing their

original high-dimensional representations into lower-

dimensional ones while maintaining contextual similarity

within the dataset. Accordingly, we train a Word2Vec model

on our dataset to produce dense vector forms for each distinct

word. Given that our dataset comprises full review texts rather

than isolated words, we aggregate the word vectors to

generate a unified representation for each review. In the case

of Doc2Vec modeling, every tokenized review must first be

assigned a distinct identifier before constructing the

corresponding feature vectors.

D. Result and Evaluation

For evaluating these four different approaches, we use the

F1 score (based on weighted average of precision and recall)

as a metric evaluation that consists of important components

like (1) True Positive (TP) that correctly predict positive

samples (2) True Negative (TN) that correctly predict

negative review samples (3) False Positive (FP) that counted

when a sample is not on actual class but predicted as the class

(4) False Negative (FN) is an opposite of FP.

We employed the F1-Score as the primary evaluation

metric, which balances precision and recall to provide a

reliable measure of classification performance. Accuracy,

Precision, Recall, and Training Time were also recorded to

provide a more comprehensive performance comparison.

The results are summarized in Table 1, which presents the

top-performing models based on the F1 Score. Among all

approaches, the SVM (linear) with Word2Vec representation

consistently achieved the best performance, with an F1 Score

of 0.8607, Accuracy of 0.8607, and the fastest training time

of 75.0 seconds.

TABLE I

BEST PERFORMING MODELS (BY F1-SCORE)

Feature

Method
Accuracy Precision Recall

F1-

Score

Training

Time (s)

Word2Vec 0.8607 0.8607 0.8607 0.8607 75.0

TF-IDF 0.8520 0.8521 0.8520 0.8520 285.5

Doc2Vec 0.8442 0.8458 0.8442 0.8440 569.3

BoW 0.8220 0.8224 0.8220 0.8219 390.3

Based on the test results, the four vectorization methods

have their limitations. Bag of Words (BoW) shows the lowest

performance because it only relies on word frequency without

considering context or semantic relationships, and it produces

a less efficient and very high data dimension. TF-IDF is

slightly better as it considers the weight of words based on

distribution, but it still does not understand contextual

meaning and requires longer training time due to the sparse

vector representation. Doc2Vec represents the document to

capture more global information. However, its performance

results are unstable on small datasets, parameterization is

more complex, and training time is the longest. Meanwhile,

Word2Vec performs best with the highest accuracy and F1-

score and the most efficient training time. However, it is still

limited because it only represents words at the local semantic

level without maintaining the full context between sentences.

E. Experimental Result

Six different machine learning algorithms were used to

evaluate models using Word2Vec features. The results are

summarized in Table 4, ranked by their F1 Score

performance. Overall, the experiments demonstrate that SVM

(RBF) with Word2Vec features provides the best

performance, with an F1 Score of 0.8593 and an Accuracy of

 e-ISSN: 2548-6861

JAIC Vol. 9, No. 5, October 2025: 2270 – 2277

2276

0.8593. In contrast, the Decision Tree with Word2Vec yielded

the lowest performance, with an F1 Score of 0.7011.

TABLE II

COMPARISON OF EXPERIMENTAL RESULTS

Algorithm Accuracy Precision Recall
F1-

Score

Training

Time (s)

SVM
(RBF)

0.8593 0.8593 0.8593 0.8593 99.6

Logistic

Regression

0.8542 0.8543 0.8542 0.8542 0.149

Gradient
Boosting

0.8327 0.8329 0.8327 0.8326 123.3

Random

Forest

0.8169 0.8178 0.8169 0.8167 15.3

KNN 0.7802 0.7891 0.7802 0.7782 0.015

Decision
Tree

0.7011 0.7012 0.7011 0.7011 4.7

In terms of efficiency, KNN recorded the fastest training

time (0.015s), followed closely by Logistic Regression

(0.149s), while Gradient Boosting and SVM required longer

training times. This trade-off between accuracy and efficiency

indicates that Logistic Regression with Word2Vec could be a

practical alternative when computational resources are

limited.

IV. CONCLUSION

This study comprehensively evaluates four distinct text

representation approaches to determine their relative

effectiveness for sentiment analysis tasks. To ensure robust

evaluation, we systematically compare each representation

method using multiple classification algorithms, including

logistic regression and random forest classifiers.

Our experiments on the benchmark "IMDb Movie

Reviews" dataset demonstrate that the Word2Vec embedding

approach consistently outperforms alternative methods,

achieving superior classification accuracy. While traditional

techniques like Bag-of-Words (BoW) and TF-IDF offer

computational simplicity and remain popular baseline

methods, our analysis reveals their inherent limitations. These

approaches fail to preserve syntactic relationships between

words and cannot capture deeper semantic meanings. Our

results suggest that these shortcomings can be effectively

addressed through distributed representation methods like

Word2Vec and Doc2Vec, which employ learned weight

matrices to encode richer linguistic information.

Our findings indicate that traditional methods can remain

competitive in specific scenarios. Specifically, BoW and TF-

IDF representations yielded comparable performance to

Doc2Vec when paired with random forest classifiers,

suggesting that well-configured traditional approaches can

sometimes rival more sophisticated modern techniques. This

observation underscores an important insight in natural

language processing: state-of-the-art models do not

universally dominate simpler methods, and optimal approach

selection depends on specific use cases and implementation

quality.

For future research directions, we identify valuable

opportunities to enhance traditional representation methods,

particularly by developing hybrid approaches that combine

their computational efficiency with aspects of semantic

awareness. Further investigation into optimal configuration

strategies for classical methods could yield significant

practical benefits, especially in resource-constrained

environments.

REFERENCES

[1] A. Salinca, “Business Reviews Classification Using Sentiment

Analysis,” Proceedings - 17th International Symposium on

Symbolic and Numeric Algorithms for Scientific Computing,
SYNASC 2015, pp. 247–250, 2016, doi:

10.1109/SYNASC.2015.46.

[2] N. M. Sharef, H. M. Zin, and S. Nadali, “Overview and future
opportunities of Sentiment Analysis approaches for big data,”

Journal of Computer Science, vol. 12, no. 3, pp. 153–168, 2016,

doi: 10.3844/jcssp.2016.153.168.
[3] M. Taboada, “Sentiment Analysis: An Overview from

Linguistics,” Annu Rev Linguist, vol. 2, no. September, pp. 325–

347, 2016, doi: 10.1146/annurev-linguistics-011415-040518.
[4] B. Pang, L. Lee, and S. Vaithyanathan, “Thumbs up? Sentiment

Classification using Machine Learning Techniques,” 2002, doi:

10.3115/1118693.1118704.
[5] T. Mullen and N. Collier, “Incorporating topic information into

sentiment analysis models,” pp. 25-es, 2004, doi:

10.3115/1219044.1219069.
[6] C. E. Osgood, G. J. Suci, and P. H. Tannenbaum, “The

Measurement of Meaning [by] Charles E. Osgood, George J. Suci

[and] Percy H. Tannenbaum,” 1964.
[7] C. K. Wang, “Sentiment Analysis Using Support Vector Machines,

Neural Networks, and Random Forests,” 2023, pp. 23–34. doi:

10.2991/978-94-6463-300-9_4.
[8] D. Subedi, Nabin Lamichhane, and N. Subedi, “Sentiment Analysis

of IMDb Movie Reviews Using SVM and Naive Bayes Classifier,”

Journal of Engineering and Sciences, vol. 4, no. 1, pp. 56–68, May
2025, doi: 10.3126/jes2.v4i1.70138.

[9] G. Cahyani, W. Widayani, S. D. Anggita, Y. Pristyanto, I. Ikmah,

and A. Sidauruk, “Klasifikasi Data Review IMDb Berdasarkan
Analisis Sentimen Menggunakan Algoritma Support Vector

Machine,” Jurnal Media Informatika Budidarma, vol. 6, no. 3, p.

1418, Jul. 2022, doi: 10.30865/mib.v6i3.4023.
[10] B. Das and S. Chakraborty, “An Improved Text Sentiment

Classification Model Using TF-IDF and Next Word Negation,”

2018.
[11] S. Al-Saqqa and A. Awajan, “The Use of Word2vec Model in

Sentiment Analysis: A Survey,” PervasiveHealth: Pervasive
Computing Technologies for Healthcare, pp. 39–43, 2019, doi:

10.1145/3388218.3388229.

[12] G. Liu and X. Wu, “Using collaborative filtering algorithms
combined with Doc2Vec for movie recommendation,”

Proceedings of 2019 IEEE 3rd Information Technology,

Networking, Electronic and Automation Control Conference,
ITNEC 2019, no. Itnec, pp. 1461–1464, 2019, doi:

10.1109/ITNEC.2019.8729076.

[13] L. Q. Trieu, H. Q. Tran, and M. T. Tran, “News classification from
social media using Twitter-based Doc2Vec model and automatic

query expansion,” ACM International Conference Proceeding

Series, vol. 2017-Decem, pp. 460–467, 2017, doi:
10.1145/3155133.3155206.

[14] C. Z. Liu, Y. X. Sheng, Z. Q. Wei, and Y. Q. Yang, “Research of

Text Classification Based on Improved TF-IDF Algorithm,” 2018
IEEE International Conference of Intelligent Robotic and Control

Engineering, IRCE 2018, no. 2, pp. 69–73, 2018, doi:

10.1109/IRCE.2018.8492945.

JAIC e-ISSN: 2548-6861

Comparison of Text Vectorization Methods for IMDB Movie Review Sentiment Analysis Using SVM

(Rifqi Mulyawan, Husni Naparin, Wifda Muna Fatihia)

2277

[15] J. Zhou, Z. Ye, S. Zhang, Z. Geng, N. Han, and T. Yang,

“Investigating response behavior through TF-IDF and Word2vec
text analysis: A case study of PISA 2012 problem-solving process

data,” Heliyon, vol. 10, no. 16, Aug. 2024, doi:

10.1016/j.heliyon.2024.e35945.
[16] D. Dessi, R. Helaoui, V. Kumar, D. R. Recupero, and D. Riboni,

“TF-IDF vs Word Embeddings for Morbidity Identification in

Clinical Notes: An Initial Study,” Jun. 2021, doi:
10.5281/zenodo.4777594.

[17] K. Kumar, B. S. Harish, and H. K. Darshan, “Sentiment Analysis

on IMDb Movie Reviews Using Hybrid Feature Extraction
Method,” International Journal of Interactive Multimedia and

Artificial Intelligence, vol. 5, no. 5, p. 109, 2019, doi:

10.9781/ijimai.2018.12.005.
[18] Z. Gharibshah, X. Zhu, A. Hainline, and M. Conway, “Deep

Learning for User Interest and Response Prediction in Online

Display Advertising,” Data Sci Eng, vol. 5, no. 1, pp. 12–26, 2020,
doi: 10.1007/s41019-019-00115-y.

[19] Y. HaCohen-Kerner, D. Miller, and Y. Yigal, “The influence of

preprocessing on text classification using a bag-of-words
representation,” PLoS One, vol. 15, no. 5, pp. 1–22, 2020, doi:

10.1371/journal.pone.0232525.
[20] A. Khan, B. Baharudin, L. H. Lee, and K. Khan, “Journal of

Advances in Information Technology,” Journal of Advances in

Information Technology, vol. 1, no. 1, p. 1, 2010.
[21] H. Brücher, G. Knolmayer, and M.-A. Mittermayer, “Document

Classification Methods for Organizing Explicit Knowledge,”

CiteSeer, vol. 41, no. 140, pp. 1–26, 2002.
[22] W. Bourequat and H. Mourad, “Sentiment Analysis Approach for

Analyzing iPhone Release using Support Vector Machine,”

International Journal of Advances in Data and Information
Systems, vol. 2, no. 1, pp. 36–44, 2021, doi:

10.25008/ijadis.v2i1.1216.

[23] D. Setyawan and E. Winarko, “Analisis Opini Terhadap Fitur
Smartphone Pada Ulasan Website Berbahasa Indonesia,” IJCCS

(Indonesian Journal of Computing and Cybernetics Systems), vol.

10, no. 2, p. 183, 2016, doi: 10.22146/ijccs.17485.
[24] S. Vijayarani, M. J. Ilamathi, M. Nithya, A. Professor, and M. P.

Research Scholar, “Preprocessing Techniques for Text Mining -An

Overview,” vol. 5, no. 1, pp. 7–16.

[25] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient

estimation of word representations in vector space,” 1st
International Conference on Learning Representations, ICLR 2013

- Workshop Track Proceedings, pp. 1–12, 2013.

[26] X. Rong, “word2vec Parameter Learning Explained,” pp. 1–21,
2014.

