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 Sentiment Analysis is a scientific study in the field of Machine Learning that focuses 

on classifying opinions expressed in text. IMDb is a platform widely used to provide 

information and share viewpoints among moviegoers worldwide, where audience 

reactions often serve as a benchmark for a movie’s success. This research aims to 

classify positive and negative sentiments by applying and evaluating the 

effectiveness of Support Vector Machine (SVM) with four different feature 

representation methods: (a) Bag of Words (BoW), (b) TF-IDF, (c) Word2Vec, and 

(d) Doc2Vec. After preprocessing the textual data, each method was employed to 

extract features for model training. The experimental results demonstrate that the 

combination of SVM with Word2Vec achieved the best overall performance with an 

F1-Score of 0.8607 and an Accuracy of 0.8607, while also being the fastest in 

training time (75.0s). In comparison, BoW reached an F1-Score of 0.8219, TF-IDF 

achieved 0.8520, and Doc2Vec obtained 0.8440. These findings highlight that 

Word2Vec provides the most effective feature representation for sentiment 

classification using SVM in this study. 
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I. INTRODUCTION 

Over the past ten years, the rapid growth of the web has 

transformed how people share their thoughts and opinions. 

Nowadays, user opinions are widespread and accessible 

across numerous online platforms, including news websites, 

personal blogs, social media, discussion boards, and review 

sites. This shift has led to an overwhelming surge of user-

generated content flooding the internet. Catching popular 

opinion about any social events, movement of national 

politics, company technique, advertising projects, and also 

product preferences amasses increasing interest from the 

clinical area (for tremendous open difficulties), and also from 

the business globe (for notable advertising failures for 

feasible market predictions of finance) [1]. 

Today, assessing and sharing experiences concerning 

products and services is a prevailing practice. Opinion mining 

has gained significant focus from the community study in 

recent years because of its big-data relevance [2], many 

challenging research issues, and useful applications in both 

commerce and the academic community. 

Sentiment analysis, often referred to as opinion mining, 

involves the process of identifying, classifying, and extracting 

subjective information and opinions related to a specific 

subject. A central challenge in this area lies in determining 

sentiment polarity—categorizing opinions as positive or 

negative—which may appear at the document, sentence, or 

feature level. This field draws upon techniques from data 

mining and Natural Language Processing (NLP) to uncover 

sentiments expressed in textual content, primarily found 

online [3]. Numerous methods and strategies have been 

proposed by researchers to improve the accuracy and 

effectiveness of sentiment analysis tasks. The general concept 

of categorizing views from messages is to designate 

"positive" or "negative" (or even "neutral") labels for blocks 

of text (papers, sentences, reviews, etc.). 

Research [4] was the very first to propose sentiment 

classification utilizing machine learning designs. They 

analyzed the Naïve Bayes, Max Entropy, and SVM versions 

for view evaluation on unigrams as well as bigrams of 

information. In their experiment, SVM matched with 

unigrams generated very good results.  
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Mullen and Collier [5] utilized Support Vector Machines 

(SVMs), and the feature set for document representation was 

expanded by incorporating sentiment indicators derived from 

a variety of external sources. Both of them introduced 

functions based upon Osgood's Concept of Semantic 

Differentiation [6] By leveraging WordNet, the values 

associated with adjectives—such as their effectiveness, 

intensity of action, and evaluative meaning—were extracted, 

alongside the application of Turney’s semantic orientation 

technique [4]. 

Support Vector Machine is superior in cases with datasets 

that are not too large in number. In addition, SVM is effective 

on data represented as text, as it can find the optimal 

hyperplane that separates the classes with maximum margin 

[7]. The Naïve Bayes algorithm is faster, but its accuracy is 

often lower due to the assumption of word independence [8]. 

Research [9] proved that the SVM algorithm tested in the case 

of sentiment analysis of IMDb review data achieved an 

accuracy value of 86.5% with a precision value of 90.67% and 

a recall value of 91.62%. Our research chose SVM as the 

classification algorithm by considering some of the previous 

studies mentioned earlier. From the aspect of accuracy value, 

SVM provides a high accuracy value for text data, making it 

suitable for data with thousands of words or significant 

features. In addition, the IMDb dataset contains varied 

opinions, but SVM can ignore irrelevant words, reducing 

noise in the dataset processing. 

As with other classification algorithms, the SVM model 

operates on numerical data, meaning that every record in the 

training set must undergo a vectorization process. Although 

the basic BoW method often yields suboptimal results, its 

improved counterpart—TF-IDF—offers better performance 

by handling stop words and assigning a significance score to 

each term [10]. However, both methods fail to capture 

semantic features and ignore the sequence of words within a 

phrase. To address these limitations, more advanced models 

for numerical document representation—such as Word2Vec 

[11] and Doc2Vec [12] —can be employed. Although both 

models are computed in a similar manner, they offer slightly 

different advantages. Word2Vec produces word embeddings 

that are highly adaptable and transferable across various 

domains, whereas Doc2Vec is more closely aligned with the 

domain of the training data, thus providing deeper contextual 

understanding. While Word2Vec offers greater flexibility 

across datasets, Doc2Vec tends to perform better when 

dealing with lengthy documents [13]. Nonetheless, both 

neural network-based models are generally expected to 

outperform traditional TF-IDF representations [14]. 

BoW, TF-IDF, Word2Vec, and Doc2Vec represent the two 

main generations of text representation techniques so that the 

research results can directly compare the performance of 

traditional and modern approaches [15]. BoW and TF-IDF are 

traditional approaches (frequency-based) that are fast, simple, 

and suitable for baseline. Word2Vec and Doc2Vec are 

modern approaches (neural embeddings) capable of 

understanding context and semantic relations [16]. 

To validate our experiments, we adopt the widely used 

“IMDb Movie Reviews” dataset and analyze whether deep 

semantic representations outperform conventional heuristic 

techniques like BoW and TF-IDF. We also investigate 

whether using alternative classification algorithms may 

further improve model performance. In this paper, we 

compare and evaluate four methods for opinion mining using 

the Support Vector Machine (SVM) algorithm on the IMDb 

dataset. IMDb is a site that shares rating and review 

information about films, TV programs, home videos, games, 

streaming videos, and other celebrity content [17]. For 

evaluation, we utilized IMDb's movie reviews dataset 

retrieved from Kaggle. This study explores four different text 

representation techniques: (a) Bag of Words, (b) TF-IDF, (c) 

Word2Vec, and (d) Doc2Vec. Our primary goal is to develop 

and evaluate SVM model configurations that aim to improve 

both classification efficiency and effectiveness. As a first 

step, we assess which text representation method yields the 

most reliable performance while maintaining a reasonable 

computational cost. To do this, we compare traditional 

methods such as Bag of Words and TF-IDF with more modern 

neural network-based representations like Word2Vec and 

Doc2Vec, which stem from deep learning approaches. Deep 

learning has increasingly become a valuable tool for decision-

makers, offering improvements in solving new challenges or 

enhancing classical algorithms [18]. 

Implementation of different mixes of pre-processing 

approaches can boost viewpoint classification and results. 

Methods like BoW can link a message with a vector, revealing 

the number of occurrences of each selected word in the 

training corpus. It is frequently suggested to carry out a 

comprehensive and systematic variety of pre-processing 

strategies incorporated with category experiments, given that 

it contributes to boosting the accuracy. According to [19], for 

all the tested datasets, there was always a minimum of one 

mix of fundamental pre-processing techniques that could be 

advised to dramatically improve the text classification by 

using BoW representation. 

The remainder of this paper is structured as follows: the 

next section discusses related work in the field, followed by 

an explanation of the SVM model, implementation details, 

vectorization strategies, experimental setup, and the results 

obtained. The last section is devoted to experiments and 

provides a brief verdict of our paper. 

 

II. LITERATURE REVIEW  

Support Vector Machines (SVMs) have earned a stellar 

reputation in machine learning, consistently hailed as one of 

the most precise and reliable discriminative classifiers. Their 

theoretical backbone is rooted in the Structural Risk 

Minimization (SRM) principle, a cornerstone concept from 

computational learning theory that seeks to strike an optimal 

balance between model complexity and generalization 

performance. By rigorously minimizing the upper bound on 

the true classification error, SVMs excel at delivering robust 
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predictions even in high-dimensional spaces. Beyond their 

empirical prowess, these models are celebrated for their 

mathematical elegance, offering a transparent framework that 

facilitates in-depth theoretical scrutiny and intuitive 

interpretation. Their versatility and interpretability make 

SVMs a favorite among researchers and practitioners, 

bridging the gap between abstract theory and real-world 

applicability [20]. 

The proposed methodologies for extracting and 

categorizing opinions from textual data can be broadly 

classified into two dominant paradigms: machine learning 

(ML)-based techniques and lexicon-driven approaches. 

Machine learning methods leverage advanced algorithms to 

automatically identify patterns and sentiments, often 

requiring large annotated datasets for training. In contrast, 

lexicon-based methods rely on predefined dictionaries of 

sentiment-laden words and linguistic rules, offering greater 

interpretability but sometimes lacking adaptability. While ML 

approaches excel in handling complex, context-dependent 

language, lexicon-based systems provide a more transparent 

and rule-governed framework, making them suitable for 

domains with well-defined sentiment expressions. This 

dichotomy highlights the trade-offs between scalability and 

explainability in opinion mining tasks [20].  

The first approach frames opinion mining as a traditional 

text classification task, employing machine learning 

algorithms that harness a combination of syntactic structures 

(e.g., word order, grammar) and linguistic features (e.g., 

sentiment-laden terms, negation patterns) to discern 

subjective expressions. These models learn from annotated 

datasets, enabling them to generalize and predict sentiment 

labels for unseen text accurately. 

In contrast, the second approach adopts a lexicon-based 

strategy, relying on curated dictionaries where words and 

phrases are pre-assigned polarity values (e.g., positive, 

negative, neutral intensity scores). This method applies rule-

based systems to aggregate sentiment indicators, often 

incorporating modifiers (e.g., "very," "not") to adjust final 

sentiment scores. While less data-dependent than ML, 

lexicon-based techniques require meticulous lexical resource 

construction and may struggle with domain-specific or 

context-dependent language. 

Supervised machine learning techniques, including 

Support Vector Machines (SVM), fundamentally rely on 

labeled training datasets encompassing positive and negative 

sentiment examples. These datasets empower the SVM to 

determine an optimal decision boundary—formally termed a 

hyperplane—within an n-dimensional feature space, thereby 

maximizing the separation margin between the two classes. 

The most critical data points, or support vectors, reside closest 

to this hyperplane and directly influence its positioning. A 

remarkable property of SVMs is their robustness to non-

support vectors: even if documents distant from the boundary 

are omitted during training, the model’s performance remains 

unaffected mainly, as the support vectors solely define the 

hyperplane. This efficiency underscores SVMs’ capability to 

generalize well, even with sparse but strategically selected 

data [21]. 

 

Figure 1. SVM Hyperplane Creation 

 

Support Vector Machines (SVMs) remain among the most 

widely used classification models, with applications spanning 

text processing, image categorization, and handwritten 

character recognition. The original SVM formulation was 

introduced in 1993, based on theoretical foundations 

established roughly three decades earlier by Vapnik and 

Chervonenkis. At its core, the SVM model seeks to separate 

data into two primary classes using a linear classifier. 

As we can see above (Fig. 1), let the input data be denoted 

as x ∈ ℝᵈ, where each instance is assigned a label yᵢ ∈ {−1, 

+1} for i = 1, 2, ..., n, with n representing the total number of 

samples. If the two classes are linearly separable in a d-

dimensional space, the decision boundary—also known as a 

hyperplane—can be expressed as [22]: 

𝑤ᵗ𝑥 + 𝑏 = 0 () 

Because the hyperlane divide two locations based on each 
other class, so each 𝑥𝑖 the sample that belongs −1 dan +1 class 
will not fulfill the equation: 

For 𝑦
𝑖

=  −1: 

 𝑤. 𝑥𝑖 + 𝑠 ≤  −1 () 

For 𝑦
𝑖

=  +1: 

 𝑤. 𝑥𝑖 + 𝑠 ≤  +1 () 

So that the two equal margins can be calculated by 
subtracting equations (2) and (3), and then [23] we can get the 
following equation: 

 𝑤. (𝑥1− 𝑥2) = 2 () 

[
𝑤

‖𝑤‖
(𝑥1− 𝑥2)] =

2

‖𝑤‖
 () 

The fundamental objective of margin maximization in 
Support Vector Machines revolves around identifying the 
most substantial possible separation boundary between 
classes. This process involves carefully calibrating the spatial 
gap separating the decision hyperplane from its closest 
neighboring observations - those critical data specimens we 
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refer to as support vectors. From a computational standpoint, 
we can transform this geometric pursuit into an elegant 
mathematical formulation where we seek to reduce the 
magnitude of the weight vector ‖w‖ to its minimal possible 
value. This minimization must occur within strictly defined 
parameters that guarantee accurate classification of every 
training instance in our dataset. 

When we express this optimization challenge in its purest 
mathematical form, we arrive at the beautifully simple yet 

profoundly significant expression 
2

‖𝑤‖
 - a representation that 

captures the inverse relationship between the weight vector's 
magnitude and the margin size we aim to expand. This 
problem can be expressed as a quadratic programming (QP) 
task, aiming to determine the minimum point of a given 
equation: 

 𝜏(𝑤)𝑤
𝑚𝑖𝑛 =

1

2
 ‖𝑤‖2 (6) 

With a constraint that must be satisfied according to the 

following inequality: 

 𝑦𝑖  (𝑥𝑖 . 𝑤 + 𝑠) − 1 ≤ 0, ∀𝑖 (7) 

To solve the (4) and (5) problems, we can use the Lagrange 

multiplier  with the formula: 

𝐿(𝑤, 𝑠, 𝑎) =
1

2
 ‖𝑤‖2 − ∑ 𝑎𝑖(𝑙

𝑖=𝑙 𝑦𝑖((𝑥𝑖 . 𝑤 + 𝑠) − 1)); (𝑖 = 1,2, … , 𝑛) (8) 

Where 𝑎𝑖 is lagrange multiplier that has a bigger value than 

0, 𝑎𝑖 ≤ 0. Take notice of the nature that the optimal gradient 

𝐿 = 0, so (8) we can modify it as a maximization problem 

which only consists of 𝑎𝑖 as following equating: 

Maximized: 

 ∑ 𝑎𝑖 −
1

2
∑ 𝑎𝑖𝑎𝑗𝑦𝑖𝑦𝑗𝑥𝑖𝑥𝑗

𝑙
𝑖,𝑗=𝑙

𝑙
𝑖=𝑙  (9) 

Fulfilled equation: 

 𝑎𝑖 ≤ 0(𝑖 = 1,2, … , 𝑙)      ∑ 𝑎𝑖𝑦𝑖 = 0𝑙
𝑖=𝑙  (10) 

The results of the above calculations will produce a 
positive lagrange multiplier (𝑎𝑖) where later the correlated 
data with 𝑎𝑖 It is called a support vector [24]. 

 

III. METHODS 

A. Dataset 

This study utilizes the IMDb movie reviews dataset 

obtained from Kaggle, which originally consists of 50,000 

samples with three columns: review, sentiment, and label. The 

dataset is evenly distributed, comprising 25,000 positive 

reviews (50.0%) and 25,000 negative reviews (50.0%). For 

the purposes of this research, a subset of 15,000 samples was 

selected. The data was subsequently divided into a training set 

of 10,500 samples and a test set of 4,500 samples. Figure 2 

shows the distribution of review lengths by character length. 

 

  
Figure 2. Review Length Distributions 

B. Data Preprocessing 

Text represents a highly unstructured form of data that 

requires substantial preprocessing before becoming suitable 

for analysis. The complete process of cleaning and 

standardizing textual data - removing noise and preparing it 

for examination - is collectively known as text preprocessing. 

As illustrated in Figure 3 and Figure 4's word cloud 

visualization, raw text data typically contains numerous 

uninformative elements that obscure meaningful patterns. Our 

preprocessing pipeline consists of two primary stages: (1) 

data inspection and (2) data cleaning. The cleaning phase 

systematically removes elements irrelevant for review 

classification, including punctuation, numerical values, and 

special characters.  

Additionally, we eliminate short function words (such as 

"him," "all," and "the") that contribute minimal semantic 

value, as their frequent appearance in the word cloud (Figure 

3 and Figure 4) demonstrates their limited analytical utility. 

The data then undergoes normalization, where derived word 

forms (e.g., "like," "liking," "likable") are reduced to their 

base forms ("like") through lemmatization before final 

tokenization. This comprehensive preprocessing workflow, 

visually evidenced by the transformation from Figure 3 and 

Figure 4's initial word cloud to the cleaned version, ensures 

our text data achieves optimal quality for subsequent analysis. 

Figure 3 shows the positive word cloud movie review 

vocabulary, while Figure 4 illustrates the negative word cloud 

of movie review vocabulary. 

 

  
Figure 3. Positive Word Cloud Movie Review Vocabulary 
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Figure 4. Negative Word Cloud of Movie Review Vocabulary 

C. Modeling 

Most classification algorithms operate on numerical data, 

which requires textual inputs to be transformed into vector 

representations before classification. Before this vectorization 

step, raw text undergoes a preprocessing pipeline that 

includes cleaning (removing punctuation marks, numbers, 

and special characters) and lemmatization. In addition, 

irrelevant words are filtered out through weighting schemes 

such as TF-IDF or other frequency-based metrics. Figure 5 

illustrates the block diagram of our text classification 

pipeline, starting from the IMDb dataset of 15,000 reviews, 

followed by preprocessing, feature extraction using BoW, TF-

IDF, Word2Vec, or Doc2Vec, and finally classification using 

machine learning algorithms (e.g., SVM). 

The dataset was split into a training set (70%, 10,500 

samples) and a test set (30%, 4,500 samples) using stratified 

sampling to preserve the original sentiment distribution. Four 

approaches were employed for feature extraction. The Bag of 

Words (BoW) method provides a simple frequency-based 

representation of words, while TF-IDF applies weighted word 

frequencies to account for document-level importance. 

Word2Vec generates distributed vector representations that 

capture semantic similarity between words, and Doc2Vec 

extends this idea by producing document-level embeddings 

using the Distributed Memory (DM) and Distributed Bag of 

Words (DBOW) architectures. 

The extracted features were then used to train machine 

learning algorithms, primarily focusing on Support Vector 

Machine (SVM with Linear kernel, C=1, probability=True, 

random_state=42). We implemented a comprehensive 

evaluation procedure measuring Accuracy, Precision, Recall, 

and F1-score to ensure robust evaluation. Additionally, 

training time was recorded to assess computational efficiency. 

An important step in the methodology was threshold 

optimization for probabilistic models. By testing thresholds 

from 0.3 to 0.7, the system selected the optimal cutoff point 

that maximized the F1-Score. It is ensured that the 

classification results were not biased toward a fixed threshold 

(0.5) but reflected the best achievable trade-off between 

Precision and Recall. 

 

  
Figure 5. Block Diagram of Text Classification Pipeline 

 

Word2Vec creates meaningful word representations by 

training a specialized neural network to predict word contexts 

within a given text corpus. This innovative approach utilizes 

two distinct but related neural architectures that differ 

primarily in their prediction direction. The first architecture, 

Continuous Bag of Words (CBOW), functions by predicting 

a target word from its surrounding context words, operating 

similarly to traditional N-Gram models but with greater 

neural sophistication. The second architecture, known as 

Skip-Gram (SG), reverses this prediction logic by using a 

single input word to predict its likely context words. 

Despite their different prediction approaches, both models 

employ an identical fundamental structure: they contain a 

projection layer (sometimes referred to as a hidden layer) with 

linear activation that serves as the actual word embedding 

space, followed by an output layer that uses a non-linear 

activation function (typically softmax or a sampling-based 

alternative) to generate probability distributions over the 

vocabulary. This elegant architecture allows Word2Vec to 

efficiently transform sparse word representations into dense, 

low-dimensional vectors that remarkably capture semantic 

and syntactic word relationships [25]. 

The model's weight optimization employs stochastic 

gradient descent (SGD) enhanced by backpropagation, a 

computationally efficient approach that iteratively adjusts 

weights across both the output and hidden (projection) layers. 

This training process transforms textual data into numerical 

representations through two primary vectorization 

approaches: concatenation, which preserves sequential 

information by combining word vectors end-to-end, or 

aggregation (typically averaging), which creates a composite 

representation of multiple words. During this transformation, 

the document corpus manifests in two distinct mathematical 

spaces: at the output layer, words are distributed across a two-
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dimensional probability space representing the vocabulary, 

while the hidden/projection layer compresses each word's 

semantic essence into a single, dense vector embedding. This 

dual-space representation enables the model to maintain the 

discrete, observable characteristics of words in the output 

layer while capturing their continuous, latent relationships in 

the embedding space. The backpropagation mechanism 

carefully coordinates updates between these layers, ensuring 

the emerging embeddings preserve both syntactic and 

semantic word relationships as reflected in their original 

textual contexts [26]. 

Building upon Word2Vec's successful architecture, the 

Doc2Vec framework extends the concept of word 

embeddings to entire documents through two specialized 

neural network architectures: Distributed Memory (DM) and 

Distributed Bag of Words (DBOW). Both models inherit and 

adapt the fundamental patterns established by Word2Vec 

while introducing document-level representations. The DM 

model, analogous to Word2Vec's CBOW architecture, 

generates predictions by analyzing a context window of 

words supplemented with a unique document identifier. This 

implementation maintains two separate weight matrices: 

matrix W for word vectors and matrix D for document 

vectors. During prediction, the model combines the document 

vector (retrieved as a column from matrix D) with context 

word vectors (from matrix W) through either averaging or 

concatenation operations, creating a rich composite 

representation that captures both word-level and document-

level semantics.  

In contrast, the DBOW model adopts Skip-Gram's 

predictive approach but operates at the document level, using 

a document identifier as input to predict its constituent words. 

This architecture proves particularly efficient as it does not 

require word vector storage during inference. After the 

training, the learned document vectors (columns in matrix D) 

serve as ready-to-use numerical representations of entire 

documents, eliminating the need for additional processing or 

feature engineering. These document embeddings effectively 

capture thematic content and contextual information, making 

them immediately suitable for downstream tasks like 

document classification, clustering, or similarity analysis 

[13]. 

The pre-processed text data is transformed into model-

ready features, initially employing the Bag-of-Words (BoW) 

technique, followed by Term Frequency–Inverse Document 

Frequency (TF-IDF). To capture richer semantic information, 

we adopt Word2Vec embeddings, which offer a refined 

method of expressing words as vectors, compressing their 

original high-dimensional representations into lower-

dimensional ones while maintaining contextual similarity 

within the dataset. Accordingly, we train a Word2Vec model 

on our dataset to produce dense vector forms for each distinct 

word. Given that our dataset comprises full review texts rather 

than isolated words, we aggregate the word vectors to 

generate a unified representation for each review. In the case 

of Doc2Vec modeling, every tokenized review must first be 

assigned a distinct identifier before constructing the 

corresponding feature vectors.  

D. Result and Evaluation 

For evaluating these four different approaches, we use the 

F1 score (based on weighted average of precision and recall) 

as a metric evaluation that consists of important components 

like (1) True Positive (TP) that correctly predict positive 

samples (2) True Negative (TN) that correctly predict 

negative review samples (3) False Positive (FP) that counted 

when a sample is not on actual class but predicted as the class 

(4) False Negative (FN) is an opposite of FP. 

We employed the F1-Score as the primary evaluation 

metric, which balances precision and recall to provide a 

reliable measure of classification performance. Accuracy, 

Precision, Recall, and Training Time were also recorded to 

provide a more comprehensive performance comparison. 

The results are summarized in Table 1, which presents the 

top-performing models based on the F1 Score. Among all 

approaches, the SVM (linear) with Word2Vec representation 

consistently achieved the best performance, with an F1 Score 

of 0.8607, Accuracy of 0.8607, and the fastest training time 

of 75.0 seconds. 

TABLE I 

BEST PERFORMING MODELS (BY F1-SCORE) 

Feature 

Method 
Accuracy Precision Recall 

F1-

Score 

Training 

Time (s) 

Word2Vec 0.8607 0.8607 0.8607 0.8607 75.0 

TF-IDF 0.8520 0.8521 0.8520 0.8520 285.5 

Doc2Vec 0.8442 0.8458 0.8442 0.8440 569.3 

BoW 0.8220 0.8224 0.8220 0.8219 390.3 

Based on the test results, the four vectorization methods 

have their limitations. Bag of Words (BoW) shows the lowest 

performance because it only relies on word frequency without 

considering context or semantic relationships, and it produces 

a less efficient and very high data dimension. TF-IDF is 

slightly better as it considers the weight of words based on 

distribution, but it still does not understand contextual 

meaning and requires longer training time due to the sparse 

vector representation. Doc2Vec represents the document to 

capture more global information. However, its performance 

results are unstable on small datasets, parameterization is 

more complex, and training time is the longest. Meanwhile, 

Word2Vec performs best with the highest accuracy and F1-

score and the most efficient training time. However, it is still 

limited because it only represents words at the local semantic 

level without maintaining the full context between sentences. 

E. Experimental Result 

Six different machine learning algorithms were used to 

evaluate models using Word2Vec features. The results are 

summarized in Table 4, ranked by their F1 Score 

performance. Overall, the experiments demonstrate that SVM 

(RBF) with Word2Vec features provides the best 

performance, with an F1 Score of 0.8593 and an Accuracy of 
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0.8593. In contrast, the Decision Tree with Word2Vec yielded 

the lowest performance, with an F1 Score of 0.7011. 

TABLE II 

COMPARISON OF EXPERIMENTAL RESULTS 

Algorithm Accuracy Precision Recall 
F1-

Score 

Training 

Time (s) 

SVM 
(RBF) 

0.8593 0.8593 0.8593 0.8593 99.6 

Logistic 

Regression 

0.8542 0.8543 0.8542 0.8542 0.149 

Gradient 
Boosting 

0.8327 0.8329 0.8327 0.8326 123.3 

Random 

Forest 

0.8169 0.8178 0.8169 0.8167 15.3 

KNN 0.7802 0.7891 0.7802 0.7782 0.015 

Decision 
Tree 

0.7011 0.7012 0.7011 0.7011 4.7 

 

In terms of efficiency, KNN recorded the fastest training 

time (0.015s), followed closely by Logistic Regression 

(0.149s), while Gradient Boosting and SVM required longer 

training times. This trade-off between accuracy and efficiency 

indicates that Logistic Regression with Word2Vec could be a 

practical alternative when computational resources are 

limited. 

IV. CONCLUSION 

This study comprehensively evaluates four distinct text 

representation approaches to determine their relative 

effectiveness for sentiment analysis tasks. To ensure robust 

evaluation, we systematically compare each representation 

method using multiple classification algorithms, including 

logistic regression and random forest classifiers. 

Our experiments on the benchmark "IMDb Movie 

Reviews" dataset demonstrate that the Word2Vec embedding 

approach consistently outperforms alternative methods, 

achieving superior classification accuracy. While traditional 

techniques like Bag-of-Words (BoW) and TF-IDF offer 

computational simplicity and remain popular baseline 

methods, our analysis reveals their inherent limitations. These 

approaches fail to preserve syntactic relationships between 

words and cannot capture deeper semantic meanings. Our 

results suggest that these shortcomings can be effectively 

addressed through distributed representation methods like 

Word2Vec and Doc2Vec, which employ learned weight 

matrices to encode richer linguistic information. 

Our findings indicate that traditional methods can remain 

competitive in specific scenarios. Specifically, BoW and TF-

IDF representations yielded comparable performance to 

Doc2Vec when paired with random forest classifiers, 

suggesting that well-configured traditional approaches can 

sometimes rival more sophisticated modern techniques. This 

observation underscores an important insight in natural 

language processing: state-of-the-art models do not 

universally dominate simpler methods, and optimal approach 

selection depends on specific use cases and implementation 

quality. 

For future research directions, we identify valuable 

opportunities to enhance traditional representation methods, 

particularly by developing hybrid approaches that combine 

their computational efficiency with aspects of semantic 

awareness. Further investigation into optimal configuration 

strategies for classical methods could yield significant 

practical benefits, especially in resource-constrained 

environments. 
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