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 Hypertension is a leading cause of cardiovascular diseases, chronic kidney failure, 

and strokes, affecting millions worldwide. Early detection and accurate risk 

prediction are crucial for effective management and prevention. This study aims to 

evaluate and compare the performance of different algorithms for predicting 

hypertension risk using a stacking ensemble approach. The model combines three 

gradient boosting algorithms XGBoost, LightGBM, and CatBoost as base learners, 

with Logistic Regression as the meta learner. The dataset, sourced from Kaggle, 

contains 4,240 instances with demographic and clinical attributes relevant to 

hypertension. The preprocessing steps included imputing missing values using the 

median, removing residual null entries, and addressing class imbalance through the 

SMOTE algorithm. Data were divided into 80% for training and 20% for testing. 

The evaluation showed that the stacking ensemble model achieved an overall 

accuracy of 92,65%, with precision, recall, and F1-scores consistently reaching 0.92 

for both classes. The confusion matrix revealed minimal misclassification, indicating 

the model’s strong ability to differentiate between low and high risk individuals. 

These results emphasize that the primary goal of this research is to identify which 

algorithm provides the best performance for hypertension risk prediction. By 

evaluating and comparing different models, this study offers insights into choosing 

the most effective algorithm for clinical decision-making and early detection 

strategies. 
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I. PENDAHULUAN 

Hipertensi merupakan kondisi medis yang ditandai oleh 

tekanan darah sistolik dan diastolik yang tinggi di atas 

tekanan darah normal[1].  Hipertensi bekerja secara perlahan 

merusak berbagai organ dalam tubuh, seperti ginjal, jantung, 

mata, dan otak yang menjadi faktor utama penyebab penyakit 

jantung, gagal ginjal kronis, serta stroke[2].  

Merujuk pada  data dari World Health Organization 

(WHO) tahun 2023 diperkirakan 1,28 miliar orang dewasa 

dalam rentang usia 23-79 tahun di seluruh dunia menderita 

Hipertensi berpenghasilan rendah dan menengah. Jumlah ini 

meningkat tajam dari 594 juta pada tahun 1975, dan 

diperkirakan akan mencapai 1,5 miliar kasus pada tahun 

2025[3].  Selain itu, menurut data Kementerian Kesehatan 

tahun 2023 penderita hipertensi di Indonesia mencapai 34,1% 

atau sekitar 70 juta penduduk[4]. Hal tersebut 

mengindikasikan 1 dari 3 orang Indonesia menderita 

hipertensi. 

Berbagai studi sebelumnya mengenai hipertensi 

menegaskan urgensi penanganan yang cepat dan tepat 

terhadap kondisi ini. Hipertensi yang tidak terkendali 

berpotensi menimbulkan komplikasi berat pada organ-organ 

vital, seperti jantung, ginjal, otak, serta mata[5]. Kondisi 

menjadi salah satu pemicu utama penyakit jantung koroner 

dan gagal jantung, yang dalam banyak kasus dapat 

menyebabkan kematian mendadak apabila tidak ditangani 

secara menyeluruh[6]. Tekanan darah tinggi yang 

berlangsung dalam jangka panjang dapat merusak sistem 

kardiovaskular secara permanen serta meningkatkan 

kemungkinan terjadinya stroke dan gangguan ginjal 

kronis[5]. Dengan demikian, hipertensi merupakan penyakit 
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yang memerlukan perhatian serius, karena keterlambatan 

dalam proses deteksi dan pengobatan dapat mengarah pada 

kondisi yang mengancam jiwa seperti gagal jantung, 

gangguan irama jantung, hingga henti jantung[7]. 

Sejalan dengan urgensi deteksi dini hipertensi, 

pemanfaatan Machine Learning muncul sebagai pendekatan 

inovatif yang berkembang pesat dalam beberapa tahun 

terakhir. Kemampuan metode Machine Learning dalam 

menganalisis data medis yang kompleks memungkinkan 

proses pengambilan keputusan menjadi lebih cepat, akurat, 

dan berbasis data[2]. Dalam praktiknya, Machine Learning 

memainkan peran strategis dalam meningkatkan efektivitas 

skrining serta mendukung upaya pencegahan yang lebih tepat 

dan terarah[8]. 

Sejumlah penelitian sebelumnya telah membahas topik 

yang sejalan dengan studi ini, terutama dalam penggunaan 

Machine Learning untuk memprediksi risiko hipertensi. Salah 

satunya membangun model prediktif menggunakan algoritma 

Artificial Neural Network (ANN) dengan akurasi mencapai 

85%, namun tanpa membandingkannya dengan algoritma lain 

dan tanpa menerapkan metode penyeimbangan data, sehingga 

berpotensi menimbulkan bias terhadap kelas yang 

dominan[9]. Studi lain memanfaatkan algoritma XGBoost 

dan memperoleh hasil akurasi sebesar 88,8%, recall 97,04%, 

dan F1-score 93,18%, namun cakupan dataset yang terbatas 

menjadi hambatan dalam menggeneralisasi hasil model 

secara luas[8]. Sementara itu, penelitian berbasis data 

skrining Kesehatan menunjukan bahwa algoritma Random 

Forest mencapai sensitivitas 81,8% dan spesifisitas 62,9%, 

meskipun masih terdapat ketimpangan performa antar metrik 

evaluasi[[6]. Di sisi lain, meta-analisis menyimpulkan bahwa 

secara keseluruhan, model Machine Learning memiliki nilai 

C-statistic sebesar 0,76, hanya sedikit lebih tinggi dari model 

regresi konvensional (0,75)[7]. 

Terdapat beberapa kekurangan dalam penelitian terdahulu, 

seperti belum optimalnya pengolahan data kompleks, 

keterbatasan jumlah atribut yang digunakan, serta minimnya 

implementasi pendekatan ensemble, menunjukkan perlunya 

strategi prediktif yang lebih menyeluruh. Model klasifikasi 

tunggal umumnya memiliki keterbatasan dalam mengenali 

pola data yang bervariasi, serta rentan terhadap permasalahan 

overfitting, terutama saat digunakan pada data kesehatan yang 

bersifat heterogen seperti hipertensi[10]. Dalam hal ini, 

metode stacking ensemble menjadi salah satu alternatif yang 

menjanjikan karena mampu memadukan performa dari 

beberapa algoritma dasar untuk menghasilkan prediksi yang 

lebih konsisten dan presisi. Salah satu keunggulan utama dari 

stacking adalah kemampuannya dalam mengintegrasikan 

keluaran berbagai base learners melalui sebuah meta learner, 

sehingga menghasilkan klasifikasi yang lebih unggul[11].  

Pemilihan algoritma gradient boosting yang mencakup 

XGBoost, LightGBM, dan CatBoost didasarkan pada temuan 

empiris yang menegaskan keunggulannya dalam pengolahan 

data tabular yang menjadi dasar penelitian ini. Penelitian 

menunjukkan bahwa Gradient Boosting Decision Trees 

(GBDT) secara konsisten memiliki kinerja lebih baik 

dibandingkan model pembelajaran mesin konvensional 

maupun arsitektur deep learning, sekaligus menawarkan 

efisiensi komputasi yang lebih tinggi pada berbagai tugas 

klasifikasi medis berbasis data tabular [12]. Selaras dengan 

hasil tersebut, studi lain menekankan bahwa varian utama 

GBDT yakni XGBoost, LightGBM, dan CatBoost masing-

masing memiliki keunggulan khusus, seperti: XGBoost 

unggul dalam akurasi prediksi, LightGBM lebih efisien dari 

sisi waktu pelatihan, sedangkan CatBoost efektif dalam 

menangani variabel kategorikal [13]. Oleh karena itu, dasar 

teoritis dan bukti empiris ini memperkuat argumentasi 

penggunaan algoritma gradient boosting sebagai komponen 

inti dalam pendekatan stacking ensemble pada penelitian ini. 

Penelitian ini berfokus pada penilaian komparatif untuk 

menentukan algoritma yang paling unggul di antara model 

yang digunakan. Dengan demikian, tujuan utama penelitian 

ini adalah menilai dan mengidentifikasi algoritma dengan 

performa terbaik untuk prediksi risiko hipertensi. 

 

II. METODE  

A. Kerangka Kerja Penelitian 

Tahap metode penelitian merupakan tahap yang mencakup 

alur atau langkah-langkah yang terencana dan logis dari awal 

hingga akhir untuk memastikan bahwa hasil penelitian dapat 

dipercaya dan valid. Dengan menggunakan bahasa 

pemrograman phyton dan software Google Collaboratory.  

Tahap penelitian memiliki alur atau langkah-langkah pada 

diagram alir seperti ditunjukkan pada gambar 1. 

 

 
Gambar 1. Tahapan Penelitian 

 

Penelitian ini difokuskan pada pengembangan model 

klasifikasi prediktif dengan menerapkan pendekatan stacking 

ensemble berbasis algoritma pembelajaran mesin modern. 

Proses dimulai dengan tahap akuisisi dan pra-pemrosesan 

data, yang melibatkan pembersihan terhadap data yang 

mengandung nilai kosong, duplikat, dan ketidakkonsistenan 

yang berpotensi menurunkan akurasi model. Setelah proses 

tersebut, dataset dibagi menjadi dua bagian, yaitu data 

pelatihan dan data pengujian, melalui teknik train-test split 

guna menjamin bahwa evaluasi performa dilakukan secara 

objektif terhadap data yang belum pernah dilatih sebelumnya. 
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Langkah ini menjadi elemen krusial untuk menjaga validitas 

proses pembelajaran mesin yang akan diterapkan. 

Tahapan berikutnya melibatkan pembangunan model 

prediksi dengan teknik stacking ensemble, di mana beberapa 

algoritma dasar (base learners) seperti CatBoost, XGBoost, 

dan LightGBM digunakan secara bersamaan untuk 

menghasilkan output prediksi awal. Hasil prediksi dari 

model-model tersebut kemudian digabungkan oleh meta-

learner Logistic Regression untuk memperoleh hasil akhir 

yang lebih optimal. Evaluasi performa dilakukan dengan 

menggunakan sejumlah metrik evaluatif seperti akurasi, 

recall, dan F1-score, serta dilengkapi dengan interpretasi 

melalui confusion matrix. Pendekatan evaluasi ini 

memberikan gambaran menyeluruh terkait kapabilitas model 

dalam melakukan klasifikasi, serta menegaskan efektivitas 

teknik ensemble yang digunakan dalam meningkatkan 

performa prediktif secara keseluruhan.  

 

B. Dataset 

Dataset merupakan kumpulan data yang terorganisir dalam 

format tertentu dan digunakan dalam analis, pelatihan model, 

penelitian dan sebagai informasi. Dataset Hypertension risk 

merupakan dataset yang digunakan dalam penelitian ini. Data 

ini diambil dari dataset Kagle[14]. Dataset ini terdiri atas 

4.240 entri dengan 13 fitur, yang mencakup 12 variabel 

independen berupa atribut demografi dan kesehatan, serta 1 

variabel dependen sebagai label kelas untuk memprediksi 

risiko hipertensi (0 = risiko rendah, 1 = risiko tinggi). Atribut 

yang tersedia antara lain jenis kelamin, usia, kebiasaan 

merokok (status perokok dan jumlah rokok per hari), 

penggunaan obat tekanan darah tinggi (BPMeds), riwayat 

diabetes, kadar kolesterol total, tekanan darah sistolik dan 

diastolik, indeks massa tubuh (BMI), detak jantung, serta 

kadar glukosa. Dengan cakupan informasi tersebut, dataset ini 

memberikan gambaran komprehensif mengenai faktor-faktor 

yang berkontribusi terhadap hipertensi dan relevan digunakan 

dalam pembangunan model prediksi untuk mendukung upaya 

deteksi dini dan strategi pencegahan. Rincian atribut yang 

digunakan dalam penelitian ini disajikan pada Tabel I. 

 
TABEL I 

FITUR PADA DATASET YANG DIGUNAKAN 

Nama Fitur Tipe Data 

Male Int64 

Age Int64 

CurrentSmoker Int64 

CigsPerDay Float64 

BPMeds Float64 

Diabetes Int64 

TotChol Float64 

SysBP Float64 

DiaBP Float64 

BMI Float64 

HeartRate Float64 

Glucose Float64 

Risk Int64 

 

 

 

C. Preprocessing Data 

Data mentah yang ada pada bab sebelumnya tidak dapat 

diproses oleh mesin secara langsung. Perlu dilakukan 

modifikasi pada data mentah agar menjadi data yang siap 

diproses oleh mesin[11]. Adapun beberapa tahapan 

preprocessing. 

Pada tahapan awal preprocessing adalah dengan 

melakukan pengecekan missing value atau data kosong yang 

ada pada data mentah (Handling Missing Value). Data kosong 

ini biasanya terjadi karena adanya kesalahan dalam input data 

atau data tersebut sengaja tidak diisi. Mesin tidak dapat 

memproses data yang tidak bernilai. Oleh sebab itu perlu 

dilakukan imputasi missing value atau pengisian data kosong. 

Terdapat beberapa cara untuk melakukan pengisian data 

kosong diantaranya adalah menggunakan nilai median. Hal 

ini dikarenakan data yang kosong melebihi 5% dari 

keseluruhan data. Imputasi menggunakan nilai median ialah 

metode efektif untuk menangani data yang hilang, khususnya 

pada dataset distribusi tidak normal, karena nilai median lebih 

tahan terhadap pengaruh nilai ekstrim dibandingkan rata-

rata(mean). Kemudian teknik preprocessing yaitu menghapus 

atau mendrop data kosong. Hal ini dilakukan setelah 

dilakukan teknik imputasi menggunakan median, data yang 

kosong berjumlah di bawah 5%.  Teknik drop digunakan 

karena  jumlah data yang hilang kurang dari 5%, karena 

tingkat kehilangan data yang rendah ini tidak secara 

signifikan mempengaruhi estimasi hasil penelitian atau 

meningkatkan risiko bias [15]. 

Tahap selanjutnya adalah penanganan ketidakseimbangan 

kelas pada data (imbalanced data handling) yang bertujuan 

untuk menyamakan distribusi antar kelas (Balancing Data 

SMOTE). Dalam penelitian ini digunakan pendekatan 

oversampling dengan metode Synthetic Minority 

Oversampling Technique (SMOTE). SMOTE bekerja dengan 

cara menghasilkan sampel sintetis baru untuk kelas minoritas, 

bukan sekadar melakukan duplikasi data. Proses ini dilakukan 

dengan memilih secara acak suatu sampel dari kelas 

minoritas, kemudian mengidentifikasi sejumlah k tetangga 

terdekatnya menggunakan algoritma k-nearest neighbors. 

Sampel sintetis selanjutnya dibentuk dengan melakukan 

interpolasi linier antara sampel awal dengan salah satu 

tetangga terdekat tersebut. Dengan cara ini, SMOTE tidak 

hanya menambah jumlah data pada kelas minoritas, tetapi 

juga memperluas ruang representasi fitur sehingga distribusi 

data menjadi lebih seimbang [16]. Teknik ini memiliki 

kelebihan mengatasi overfitting dan Lebih cocok untuk 

menangani ketidakseimbangan kelas, terutama jika jumlah 

sampel kelas minoritas sangat kecil. 

 

D. Train dan Test Split 

Train dan Test Split adalah teknik yang umum digunakan 

dalam evaluasi model machine learning untuk membagi 

dataset menjadi dua bagian. Bagian pertama Adalah pelatihan 

(training set) dan bagian kedua untuk pengujian (test set)[17] 

. Metode ini memungkinkan peneliti untuk melatih model 

pada satu subset data dan kemudian menguji performa model 
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tersebut pada subset data yang terpisah, sehingga memberikan 

gambaran yang lebih akurat tentang bagaimana model akan 

berfungsi pada data baru yang belum pernah dilihat 

sebelumnya 

 

E. Algoritma Model 

Stacking ensemble merupakan salah satu pendekatan 

dalam ensemble learning yang menggabungkan hasil prediksi 

dari berbagai model dasar (base learners) melalui sebuah 

model tambahan yang dikenal sebagai meta learner, dengan 

tujuan memperoleh prediksi akhir yang lebih tepat dan andal. 

Berbeda dengan metode ensemble lain seperti bagging dan 

boosting yang menggabungkan prediksi secara langsung, 

stacking mempelajari pola penggabungan terbaik dari output 

model-model dasar tersebut agar dapat meningkatkan kinerja 

secara keseluruhan. 

Pada implementasinya, stacking memanfaatkan beberapa 

algoritma base learners yang berbeda, seperti CatBoost, 

XGBoost, dan LightGBM, yang terkenal mampu menangani 

data numerik maupun kategorikal secara efektif dan 

memberikan hasil prediksi yang kuat. Prediksi dari base 

learners ini selanjutnya dijadikan sebagai input bagi meta 

learner, biasanya berupa regresi logistik atau model sederhana 

lain yang bertugas mencari kombinasi optimal dari output 

tersebut untuk menghasilkan prediksi final [11].Pendekatan 

ini efektif dalam mengatasi keterbatasan masing-masing base 

learner, mengurangi risiko overfitting, dan meningkatkan 

akurasi model, terutama dalam konteks prediksi penyakit 

kronis seperti hipertensi. 

 

1)   Algoritma Base Learner  

Base learner adalah model dasar yang digunakan dalam 

teknik ensemble learning, khususnya dalam stacking 

ensemble, untuk menghasilkan prediksi individual yang 

kemudian digabungkan oleh meta learner. Pemilihan 

algoritma base learner yang tepat sangat penting karena 

berpengaruh langsung terhadap performa akhir model 

ensemble. Beberapa algoritma berbasis pohon keputusan 

yang populer dan banyak digunakan sebagai base learners 

adalah CatBoost, LightGBM, dan XGBoost, karena 

kemampuan mereka yang unggul dalam mengelola data 

numerik dan kategorikal serta efisiensi komputasi yang tinggi 

[18], [19]. 

CatBoost adalah algoritma boosting berbasis pohon yang 

dikembangkan untuk secara khusus menangani data 

kategorikal tanpa perlu konversi eksplisit seperti one-hot 

encoding. Algoritma ini menggunakan teknik ordered 

boosting dan pengkodean target statistik yang mencegah 

overfitting dan meningkatkan akurasi model [20]. CatBoost 

mampu memberikan hasil prediksi yang akurat dan stabil 

dengan waktu pelatihan yang efisien, sehingga banyak 

diaplikasikan dalam berbagai bidang termasuk prediksi risiko 

penyakit kronis [19]. 

LightGBM adalah framework gradient boosting yang 

dioptimalkan untuk kecepatan dan penggunaan memori yang 

efisien. LightGBM menggunakan metode leaf-wise dengan 

pembatasan depth yang membantu mengurangi kesalahan 

prediksi dan overfitting pada dataset besar dan kompleks. 

Algoritma ini juga mendukung fitur kategorikal secara 

langsung dan dirancang untuk skala besar, menjadikannya 

pilihan populer dalam aplikasi machine learning skala industri 

[20].Penggunaan LightGBM sebagai base learner dalam 

stacking ensemble telah terbukti meningkatkan performa 

model prediksi penyakit [18]. 

XGBoost (Extreme Gradient Boosting) adalah salah satu 

algoritma boosting yang paling banyak digunakan karena 

performanya yang tinggi dan kemampuannya untuk 

menangani dataset besar dengan fitur yang kompleks. 

XGBoost menggabungkan regularisasi L1 dan L2 untuk 

mengontrol overfitting serta menggunakan metode tree 

boosting yang efisien secara komputasi. Algoritma ini telah 

diaplikasikan secara luas dalam berbagai kompetisi dan studi 

terkait prediksi kesehatan karena kemampuannya 

menghasilkan model yang akurat dan robust [19], [20]. 

2)   Algoritma Meta Learner  

Dalam teknik stacking ensemble, meta learner berperan 

untuk menggabungkan prediksi dari beberapa base learners 

guna menghasilkan prediksi akhir yang memiliki tingkat 

akurasi lebih tinggi. Salah satu algoritma yang paling umum 

digunakan sebagai meta learner adalah regresi logistik. 

Algoritma ini merupakan metode statistik yang sering dipakai 

untuk klasifikasi biner dengan cara memodelkan probabilitas 

suatu peristiwa berdasarkan variabel input yang 

diberikan[20]. 

Regresi logistik bekerja dengan menggunakan fungsi 

sigmoid untuk menghubungkan probabilitas keluaran dengan 

kombinasi linier dari variabel input. Model ini menghasilkan 

output dalam rentang nilai antara 0 dan 1, yang selanjutnya 

dipakai untuk menentukan kelas prediksi akhir. Secara 

matematis, probabilitas prediksi kelas positif pada stacking 

ensemble menggunakan regresi logistik sebagai meta learner. 

 

F. Evaluasi 

Evaluasi kinerja model merupakan langkah krusial dalam 

pengembangan sistem pembelajaran mesin, karena bertujuan 

menghitung sejauh mana model mampu mengklasifikasikan 

data dengan tepat. Dalam penelitian ini, digunakan lima 

metrik utama: precision, recall, F1‑score, akurasi, dan 

confusion matrix, yang umum diaplikasikan pada klasifikasi 

biner. Setiap metrik memiliki fokus evaluasi yang berbeda 

sehingga saling melengkapi, dan pemilihannya harus 

mempertimbangkan konteks permasalahan serta potensi 

ketidakseimbangan data yang mungkin terjadi[21], [22]. 

Precision mengukur rasio prediksi positif yang benar 

dibandingkan dengan semua prediksi yang dikategorikan 

positif, yaitu TP / (TP + FP). Di sisi lain, recall menilai 

kemampuan model untuk menemukan seluruh kasus positif 

aktual, yaitu TP / (TP + FN). F1‑score digunakan sebagai 

ukuran kompromi antara precision dan recall—yang sangat 

relevan pada situasi data tidak seimbang—dengan 

menghitung 2 × (precision × recall) / (precision + recall). 
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Kombinasi ketiga metrik ini memberikan evaluasi lebih 

menyeluruh terhadap kinerja deteksi model[23]. 

Akurasi tetap menjadi metrik dasar yang digunakan untuk 

menilai seberapa besar persentase prediksi yang benar, yaitu 

(TP + TN) / (TP + TN + FP + FN). Namun, dalam kondisi 

data tidak seimbang, akurasi dapat menyesatkan.  

Confusion matrix digunakan sebagai tampilan visual dua 

dimensi untuk menggambarkan distribusi prediksi benar dan 

salah per kelas, memberikan informasi mendalam mengenai 

jenis kesalahan yang terjadi. Informasi tersebut kemudian 

bisa dimanfaatkan untuk memperbaiki model melalui 

optimasi hyperparameter atau teknik pembobotan kelas[21]. 

 

III. HASIL DAN PEMBAHASAN 

A. Data set 

Data yang digunakan merupakan data sekunder yang 

didapatkan dari platform Kaggle. Karena data yang 

didapatkan berupa dataset sekunder kekurangan dari dataset 

yang digunakan memiliki kebolehjadian tidak relevan 

terhadap keadaan di Indonesia. 

Variabel-variabel dalam dataset ini mencakup faktor 

biologis seperti usia, jenis kelamin (male), kadar kolesterol 

total (totChol), kadar glukosa darah (glucose), dan indeks 

massa tubuh (BMI). Selain itu, dataset juga melibatkan 

informasi gaya hidup seperti status merokok (currentSmoker) 

dan jumlah rokok yang dihisap per hari (cigsPerDay), serta 

penggunaan obat tekanan darah (BPMeds) dan status diabetes 

(diabetes). Detak jantung (heartRate) turut dicatat sebagai 

penunjang analisis kesehatan kardiovaskular. Variabel target 

atau label, yaitu Risk, menunjukkan klasifikasi risiko 

hipertensi dengan nilai 1 untuk risiko tinggi dan 0 untuk risiko 

rendah. 

B. Preprocessing 

Pada handling missing value ini, terdapat 2 teknik yang 

diimplementasikan dalam proses ini, pertama menggunakan 

teknik imputasi median. Teknik ini digunakan untuk fitur 

glucose yang terdapat nilai kosong sebanyak 388.  

Teknik imputasi median dipilih dari pada teknik 

menghapus data pada kolom glucose, karena data kosong 

pada fitur ini melebihi 5% dari keseluruhan data. Selain itu, 

teknik ini memiliki keunggulan untuk menghindari bias, 

menjaga distribusi data, dan lebih tahan terhadap outlier.   

Teknik selanjutnya ialah menghapus data kosong. Teknik 

ini digunakan pada fitur cigPerDay, BPMeds, totChol dan 

BMI. Hal ini dilakukan setelah dilakukan teknik imputasi 

menggunakan median, data yang kosong berjumlah di bawah 

5% dari keseluruhan data.  Teknik drop digunakan karena  

jumlah data yang hilang kurang dari 5%, karena tingkat 

kehilangan data yang rendah ini tidak secara signifikan 

mempengaruhi estimasi hasil penelitian atau meningkatkan 

risiko bias .  

Tahap berikutnya yaitu melakukan proses handling 

imbalanced data yang bertujuan untuk Menyeimbangkan 

Jumlah Kelas dengan menggunakan pendekatan SMOTE. 

Dapat terlihat pada gambar 4, bahwa distribusi data pada 

variabel target Risiko dengan nilai 0 untuk risiko rendah dan 

1 untuk risiko tinggi tidak seimbang. Jumlah sampel dengan 

kelas 0 jauh lebih banyak dibandingkan dengan kelas 1. 

Ketidakseimbangan data ini dapat menyebabkan model 

cenderung memprediksi kelas mayoritas (kelas 0), sehingga 

mengurangi akurasi prediksi untuk kelas minoritas (kelas 1), 

Dapat dilihat pada gambar 4. 

 

 
Gambar 4. Perbandingan Data. 

 

Untuk mengatasi masalah ini, diperlukan teknik 

penyeimbangan data, yaitu oversampling pada kelas 

minoritas menggunakan metode SMOTE (Synthetic Minority 

Oversampling Technique). SMOTE bekerja dengan cara 

mensintesis data baru untuk kelas minoritas (kelas 1) 

berdasarkan interpolasi antara sampel yang ada. Hasilnya, 

distribusi data menjadi seimbang, dengan jumlah sampel pada 

kedua kelas (0 dan 1) setara. Dengan distribusi yang 

seimbang, model memiliki kesempatan yang sama untuk 

mempelajari pola dari kedua kelas, sehingga mengurangi bias 

terhadap kelas mayoritas, Dapat dilihat pada gambar 5. 

 

 
Gambar 5. Hasil Balancing data SMOTE 

C. Train dan Test Split 

Pada penelitian ini, dataset dengan total 4240 sampel 

dibagi menjadi dua subset, yaitu data training dan data testing, 

dengan proporsi 80:20. Pembagian ini dilakukan untuk 

memastikan bahwa model pembelajaran mesin dapat dilatih 

dan dievaluasi secara optimal. Data training yang terdiri dari 

3272 sampel (80% dari total dataset) digunakan untuk melatih 

model, mengidentifikasi pola, dan mempelajari hubungan 
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antara variabel prediktor dan target. Dengan jumlah sampel 

yang signifikan , data training memberikan representasi yang 

cukup untuk membangun model yang generalizable. 

Data testing, yang mencakup 818 sampel (20% dari total 

dataset), digunakan untuk mengevaluasi performa model 

yang telah dilatih. Subset ini tidak pernah dilihat oleh model 

selama pelatihan, sehingga dapat memberikan estimasi 

akurasi model secara independen. Proporsi 80:20 ini adalah 

pembagian standar yang sering digunakan dalam machine 

learning karena menyediakan cukup data untuk pelatihan 

sekaligus menjaga representasi dalam evaluasi model. 

Splitting ini bertujuan untuk memastikan bahwa model dapat 

memprediksi dengan baik pada data baru yang belum pernah 

dilihat sebelumnya. 
TABEL II 

PEMBAGIAN  DATA TRAINING DAN DATA TEST  

Deskripsi Data Training Data Testing 

Proporsi 80% 20% 

Jumlah 3272 818 

 

D. Algoritma Model 

Dengan menggunakan metode Stacking Ensemble untuk 

klasifikasi, langkah utama yang diambil adalah penyetelan 

parameter. Hasil penyetelan parameter ditunjukkan pada tabel 

3. 

TABEL III 
HYPERTUNNING PARAMETER  

Model Hyperparameter Nilai Terbaik 

XGBoost n_estimators 600 

learning_rate 0.05 

max_depth 4 

subsample 0.7 

colsample_bytree 0.7 

gamma 1 

eval_metric logloss 

use_label_encoder False 

LightGBM n_estimators 600 

learning_rate 0.01 

max_depth 6 

num_leaves 63 

subsample 1.0 

colsample_bytree 0.7 

CatBoost iterations 600 

learning_rate 0.01 

depth 8 

l2_leaf_reg 1 

verbose 0 

Stacking Enemble 

(Logistic Regression) 

Solver lbfgs 

max_iter 500 

 

Dalam konteks penggunaan algoritma ensemble stacking 

yang terdiri dari XGBoost, LightGBM, dan CatBoost, proses 

tuning dilakukan untuk menentukan kombinasi optimal dari 

hyperparameter pada masing-masing algoritma. Untuk model 

XGBoost, tuning mencakup parameter seperti jumlah pohon 

(n_estimators), tingkat pembelajaran (learning_rate), 

kedalaman maksimum pohon (max_depth), rasio subsample 

data pelatihan (subsample), fraksi fitur yang digunakan per 

pohon (colsample_bytree), serta parameter regularisasi 

gamma. Konfigurasi terbaik yang diperoleh adalah 

n_estimators sebesar 600, learning_rate sebesar 0.05, 

max_depth 4, subsample 0.7, colsample_bytree 0.7, dan 

gamma sebesar 1. 

Pada algoritma LightGBM, tuning dilakukan terhadap 

parameter n_estimators, learning_rate, max_depth, 

num_leaves, subsample, dan colsample_bytree. Hasil tuning 

menunjukkan bahwa kombinasi terbaik adalah n_estimators 

sebesar 600, learning_rate sebesar 0.01, max_depth 6, dan 

num_leaves 63, dengan nilai subsample dan 

colsample_bytree masing-masing sebesar 1.0 dan 0.7. 

Sedangkan pada model CatBoost, parameter yang dituning 

meliputi jumlah iterasi (iterations), tingkat pembelajaran 

(learning_rate), kedalaman pohon (depth), dan regularisasi 

daun (l2_leaf_reg). Konfigurasi terbaik untuk CatBoost 

diperoleh dengan iterations 600, learning_rate 0.01, depth 8, 

dan l2_leaf_reg 1. 

Ketiga model tersebut kemudian digabungkan ke dalam 

arsitektur stacking ensemble dengan logistic regression 

sebagai meta-learner. Logistic regression digunakan untuk 

menangkap hubungan non-linier dari prediksi yang dihasilkan 

oleh base learners, dengan konfigurasi solver lbfgs dan 

max_iter sebanyak 500 iterasi. Proses tuning ini secara 

keseluruhan bertujuan untuk menyeimbangkan kompleksitas 

model dengan kemampuannya melakukan generalisasi 

terhadap data yang belum terlihat. Hasil akhir menunjukkan 

bahwa konfigurasi tersebut menghasilkan model dengan 

akurasi yang tinggi dan stabil, serta nilai precision, recall, dan 

F1-score yang seimbang antar kelas. Dengan demikian, 

tuning hyperparameter berperan penting dalam meningkatkan 

performa keseluruhan dari sistem klasifikasi berbasis 

ensemble. 

E. Evaluasi 

Penilaian kinerja model adalah langkah penting dalam 

penelitian ini yang bertujuan untuk menilai sejauh mana 

model dapat mengklasifikasikan risiko hipertensi dengan 

tepat. Beberapa metrik utama digunakan dalam proses 

evaluasi ini untuk memberikan gambaran menyeluruh tentang 

performa model, seperti akurasi, precision, recall, dan F1-

score. Pemilihan metrik-metrik ini didasarkan pada 

kemampuan mereka untuk secara holistik mengukur 

keseimbangan antara sensitivitas dan spesifisitas model, 

terutama dalam situasi data yang tidak seimbang. Hasil dari 

evaluasi model stacking ensemble dapat dilihat pada tabel 3. 

 
TABEL III 

CLASSIFICATION REPORT  
Metrix Nilai 

Accuracy 0.9265 

Precision 0.93 

Recall 0.92 

F1-score 0.92 

 

Tabel di atas menyajikan hasil evaluasi kinerja model yang 

menggunakan beberapa metrik utama, yaitu akurasi, 

precision, recall, dan F1-score. Secara keseluruhan, model ini 

menunjukkan performa yang sangat baik dalam 
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mengklasifikasikan risiko hipertensi, dengan tingkat akurasi 

sebesar 92,65%. Nilai ini mencerminkan bahwa model 

berhasil memprediksi dengan tepat lebih dari 92% dari 

keseluruhan data uji yang diberikan, yang menunjukkan 

kemampuan model dalam memberikan prediksi yang reliabel. 

Metrik precision, yang mengukur proporsi prediksi positif 

yang benar, tercatat sebesar 0,93. Angka ini mengindikasikan 

bahwa 93% dari semua instance yang diprediksi sebagai 

berisiko tinggi benar-benar termasuk dalam kategori tersebut. 

Hal ini menunjukkan bahwa model memiliki kemampuan 

yang sangat baik dalam mengidentifikasi individu yang 

berisiko tinggi hipertensi tanpa menghasilkan banyak prediksi 

positif yang salah. 

Sementara itu, nilai recall yang tercatat sebesar 0,92 

menunjukkan kemampuan model dalam mendeteksi 92% dari 

seluruh instance yang benar-benar berisiko tinggi. Meskipun 

demikian, terdapat sedikit ketidaktepatan dalam deteksi, yang 

tercermin dari beberapa instance yang tidak teridentifikasi 

dengan benar. 

Nilai F1-score yang mencapai 0,92 mengindikasikan 

adanya keseimbangan yang sangat baik antara precision dan 

recall. F1-score ini memberikan gambaran menyeluruh 

mengenai performa model, khususnya dalam konteks data 

yang tidak seimbang. Secara keseluruhan, model stacking 

ensemble ini terbukti sangat efektif dalam memprediksi risiko 

hipertensi, dengan kinerja yang konsisten dan stabil di kedua 

kelas risiko, yakni risiko tinggi dan rendah. 

Dibandingkan dengan penelitian-penelitian sebelumnya, 

menunjukkan bahwa model yang dikembangkan dalam 

penelitian ini memberikan hasil yang lebih optimal. Salah satu 

penelitian sebelumnya[24], membangun model prediktif 

menggunakan algoritma Artificial Neural Network (ANN) 

dengan akurasi 85%, namun penelitian tersebut tidak 

membandingkan ANN dengan algoritma lain dan tidak 

menerapkan metode penyeimbangan data, sehingga 

berpotensi menimbulkan bias terhadap kelas yang lebih 

dominan. Studi lainnya[8],menggunakan algoritma XGBoost 

dan memperoleh akurasi 88,8%, recall 97,04%, dan F1-score 

93,18%, namun ukuran dataset yang terbatas menghalangi 

model ini dalam menggeneralisasi hasil secara lebih luas. 

Penelitian ini, dengan penerapan teknik stacking ensemble 

yang menggabungkan XGBoost, LightGBM, dan CatBoost, 

mencapai akurasi 92,65%, dengan kinerja yang konsisten dan 

stabil pada kedua kelas risiko hipertensi. Hasil perbandingan 

di tunjukan pada tabel 4. 

 
TABEL IV 

HASIL PERBANDINGAN PENELITIAN 
Peneliti Model Akurasi 

Purwono P et al[24] ANN 85% 

Islam M et al[8] XGBoost 88,8% 

Penelitian ini Stacking Ensemble(CatBoost, 

XGBoost, dan LightGBM) 

92,65% 

 

Meskipun penelitian ini menunjukkan hasil yang 

memuaskan, terdapat beberapa keterbatasan yang perlu 

diperhatikan. Salah satunya adalah potensi overfitting, 

terutama karena model stacking ensemble yang digunakan 

dapat menjadi sangat kompleks dengan banyaknya algoritma 

yang digabungkan berisiko menyesuaikan terlalu erat dengan 

data pelatihan dan kurang mampu menggeneralisasi pada data 

yang belum pernah dilihat sebelumnya. Selain itu, 

keterbatasan data juga menjadi perhatian, karena dataset yang 

digunakan berasal dari satu sumber, yaitu Kaggle, yang 

mungkin tidak sepenuhnya mewakili kondisi demografis atau 

geografis tertentu, seperti populasi Indonesia. Ukuran sampel 

yang digunakan, meskipun cukup besar, tetap memiliki 

batasan dalam hal representasi kondisi global. Oleh karena 

itu, validasi eksternal pada dataset yang lebih beragam dan 

dari lokasi yang berbeda akan sangat diperlukan untuk 

memastikan model ini dapat diandalkan dalam konteks yang 

lebih luas. 

Potensi overfitting yang telah diuraikan sebelumnya perlu 

dikaji lebih lanjut melalui analisis visual. Untuk itu, disajikan 

visual perbandingan akurasi pelatihan dan pengujian pada tiap 

model algoritma guna menilai secara langsung kestabilan 

kemampuan generalisasi dan mendeteksi indikasi overfitting. 

Visualisasi ini memberikan konteks awal terhadap kinerja 

model pada data yang tidak pernah dilihat sebelumnya. 

 

 
Gambar 6. Training vs Testing Accuracy Catboost 

 

Gambar 6, memperlihatkan perbandingan akurasi pada 

data latih dan data uji untuk algoritma CatBoost. Akurasi pada 

data latih hampir mencapai 0,99 sedangkan akurasi pada data 

uji konsisten sekitar 0,92. Perbedaan yang relatif kecil antara 

kedua ukuran yang berkisar Δacc ≈0,07–0,08 

mengindikasikan rentang generalisasi yang terbatas dan tidak 

menunjukkan tanda-tanda overfitting yang signifikan. 

Dengan kata lain, peningkatan kecocokan terhadap data latih 

tidak memicu penurunan kinerja yang bermakna pada data uji, 

sehingga menandakan trade off bias varian yang terkelola 

dengan baik dan mendukung kesimpulan bahwa CatBoost 

mempertahankan kemampuan generalisasi terhadap sampel 

yang belum pernah diamati. 
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Gambar 7. Training vs Testing Accuracy LightGBM 

 

Gambar 7, menyajikan visualisasi perbandingan akurasi 

pada data pelatihan dan pengujian untuk algoritma 

LightGBM. Akurasi pelatihan tercatat sangat tinggi, 

mendekati 1,00, sementara akurasi pengujian stabil sekitar 

0,92. Perbedaan keduanya relatif kecil  yang berkisar Δacc ≈ 

0,07, yang menunjukkan celah generalisasi sempit dan 

ketiadaan indikasi overfitting yang bermakna. Temuan ini 

mengisyaratkan bahwa peningkatan kecocokan model pada 

data latih tidak disertai degradasi kinerja pada data uji, 

sehingga trade-off bias–varians berada dalam kendali. Secara 

keseluruhan, LightGBM memperlihatkan kemampuan 

generalisasi yang baik terhadap data yang belum pernah 

diamati. 

 
Gambar 8. Training vs Testing Accuracy XGboost 

 

Gambar 8, menunjukkan hasil perbandingan akurasi 

pelatihan dan pengujian pada algoritma XGBoost. Grafik 

tersebut memperlihatkan bahwa akurasi pelatihan berada 

pada tingkat sangat tinggi, mendekati 1,00, sementara akurasi 

pengujian tetap stabil sekitar 0,92. Perbedaan antara keduanya 

relatif kecil yang berkisar Δacc ≈0,07–0,08, yang 

menandakan celah generalisasi sempit dan tidak ditemukan 

gejala overfitting yang berarti. Hal ini mengindikasikan 

bahwa meskipun model XGBoost memiliki kecocokan yang 

kuat terhadap data latih, kinerjanya tidak menurun signifikan 

ketika diuji pada data baru. Konsistensi ini mempertegas 

bahwa XGBoost mampu menjaga keseimbangan bias varians 

dengan baik serta memiliki kapasitas generalisasi yang andal 

pada data yang belum pernah diamati sebelumnya. 

 

 
Gambar 9. Training vs Testing Accuracy Stacking Ensemble 

 

Pada grafik model gambar 9, model stacking yang 

mengintegrasikan keluaran CatBoost, LightGBM, dan 

XGBoost menunjukkan akurasi pelatihan sekitar 0,99 dan 

akurasi pengujian 0,9265. Selisih akurasi yang relatif sempit 

sebesar Δacc ≈0,06–0,07 mengindikasikan bahwa proses 

agregasi tidak menambah kompleksitas yang berujung pada 

overfitting, bahkan mempertahankan dan sedikit 

meningkatkan kemampuan generalisasi dibandingkan 

masing-masing model dasar. Kesesuaian nilai akurasi uji pada 

grafik stacking sebesar 0,9265 dengan hasil evaluasi 

keseluruhan meneguhkan bahwa model tetap andal pada data 

yang tidak diamati sebelumnya. Secara keseluruhan, keempat 

grafik menghadirkan bukti visual dan kuantitatif bahwa 

selisih akurasi pelatihan dan pengujian yang konsisten. selain 

itu,  selisih antar model pada rentang yang sempit,  hal ini 

menunjukan bahwa model yang dikembangkan dalam 

penelitian ini tidak mengalami overfitting. 

Untuk memberikan gambaran yang lebih jelas mengenai 

performa model, confusion matrix digunakan sebagai alat 

bantu visualisasi. Confusion matrix ini menunjukkan 

distribusi prediksi yang benar dan salah untuk setiap kelas 

(risiko rendah dan tinggi). Analisis ini memberikan wawasan 

tentang seberapa baik model dapat membedakan antara kedua 

kelas tersebut, serta mengidentifikasi kesalahan yang 

mungkin terjadi pada tiap model. 
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Gambar 10. Confusion Matrix Catboost 

 

Gambar 10, menampilkan hasil confusion matrix untuk 

CatBoost, menunjukkan distribusi prediksi terdiri atas 421 

kasus negatif yang terklasifikasi benar, 55 kasus negatif yang 

keliru diklasifikasikan sebagai positif, 14 kasus positif yang 

tidak terdeteksi, dan 414 kasus positif yang terklasifikasi 

benar. Pola tersebut mencerminkan kepekaan deteksi yang 

tinggi terhadap kelompok berisiko, terlihat dari jumlah kasus 

positif terlewat yang paling sedikit serta jumlah kasus positif 

teridentifikasi yang paling banyak dibandingkan model dasar 

lainnya. Namun, keunggulan ini disertai peningkatan 

kesalahan pada kelompok berisiko rendah karena lebih 

banyak kasus negatif yang salah diberi label positif. Temuan 

ini menunjukkan bahwa CatBoost menitikberatkan pada 

penangkapan seluas mungkin terhadap individu berisiko 

tinggi, dengan konsekuensi adanya tambahan kesalahan pada 

kelas berisiko rendah. Secara keseluruhan, kinerja yang 

ditampilkan tetap seimbang. 

 

 
Gambar 11. Confusion Matrix LightGBM 

 

Gambar 11, menyajikan confusion matrix untuk 

LightGBM, menunjukkan distribusi prediksi berupa 422 

kasus negatif yang diklasifikasikan dengan benar, 54 kasus 

negatif yang keliru diberi label positif, 22 kasus positif yang 

tidak terdeteksi, serta 406 kasus positif yang teridentifikasi 

dengan benar. Pola tersebut merefleksikan pendekatan yang 

lebih berhati-hati dibandingkan CatBoost, terlihat dari 

meningkatnya jumlah kasus positif yang terlewat sehingga 

tingkat kepekaan menurun, meskipun kekeliruan terhadap 

kelompok berisiko rendah sedikit berkurang. Dengan kata 

lain, LightGBM cenderung bersifat konservatif dalam 

mengenali individu berisiko tinggi, Sebagian kasus tidak 

tertangkap namun sekaligus menekan kesalahan pada 

individu berisiko rendah. Secara menyeluruh, kinerja yang 

ditampilkan menegaskan kompromi yang berbeda: penurunan 

kesalahan pada kelompok berisiko rendah dibayar dengan 

berkurangnya kemampuan penangkapan pada kelompok 

berisiko tinggi. 

 

 
Gambar 12. Confusion Matrix XGBoost 

 

Gambar 12, menampilkan confusion matrix untuk 

XGBoost menunjukkan hasil prediksi dengan 422 kasus 

negatif yang terklasifikasi benar, 54 kasus negatif yang keliru 

diidentifikasi sebagai positif, 20 kasus positif yang tidak 

terdeteksi, serta 408 kasus positif yang terklasifikasi dengan 

benar. Pola ini memperlihatkan posisi XGBoost di antara 

CatBoost dan LightGBM, karena jumlah kasus positif yang 

terlewat lebih sedikit daripada LightGBM tetapi lebih banyak 

dibandingkan CatBoost, sementara kesalahan pada kasus 

negatif sebanding dengan LightGBM. Dengan konfigurasi 

tersebut, XGBoost menampilkan keseimbangan yang relatif 

baik antara kemampuan mendeteksi individu berisiko tinggi 

dan menjaga ketepatan pada individu berisiko rendah. Secara 

keseluruhan, distribusi kesalahan ini menunjukkan bahwa 

XGBoost mampu mempertahankan performa yang stabil 

dengan tingkat keseimbangan yang lebih proporsional 

dibandingkan kedua model dasar lainnya.  
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Gambar 13. Confusion Matrix Stacking Ensemble 

 

Gambar 13, menampilkan confusion matrix untuk model 

stacking, menunjukkan distribusi hasil prediksi berupa 426 

kasus negatif yang terklasifikasi dengan benar, 50 kasus 

negatif yang salah dikategorikan sebagai positif, 17 kasus 

positif yang tidak terdeteksi, serta 411 kasus positif yang 

terklasifikasi benar. Dengan demikian, pendekatan stacking 

mampu merestrukturisasi pola kesalahan secara lebih 

proporsional, menekan kekeliruan pada kelompok berisiko 

rendah tanpa mengurangi ketepatan dalam mengenali 

kelompok berisiko tinggi, sehingga menghasilkan kualitas 

klasifikasi yang lebih unggul dibandingkan setiap model 

dasar. Hasil ini juga memperlihatkan kinerja yang lebih baik 

dibandingkan seluruh algoritma penyusunnya, ditandai 

dengan jumlah kesalahan pada kelompok berisiko rendah 

yang lebih sedikit serta jumlah kasus negatif yang tepat 

terklasifikasi paling banyak. Sementara itu, jumlah kasus 

positif yang terlewat tetap rendah dan jumlah kasus positif 

yang teridentifikasi dengan benar tetap tinggi. Pola distribusi 

tersebut menegaskan bahwa stacking tidak hanya 

memperkuat stabilitas, tetapi juga meningkatkan 

keseimbangan dalam kinerja klasifikasi. 

Secara keseluruhan, meskipun model menunjukkan 

performa yang cukup memadai, upaya untuk mengurangi 

kesalahan klasifikasi pada kedua kelas sangat penting untuk 

meningkatkan akurasi dan efektivitasnya dalam prediksi 

risiko hipertensi. 

 

IV. KESIMPULAN 

Penelitian ini mengembangkan model prediksi risiko 

hipertensi dengan menggunakan pendekatan stacking 

ensemble yang menggabungkan algoritma XGBoost, 

LightGBM, dan CatBoost. Model ini menggunakan dataset 

sekunder yang diperoleh dari platform Kaggle dan 

menunjukkan hasil yang sangat baik, dengan akurasi 

mencapai 92,65%. Selain itu, model ini memiliki kemampuan 

yang kuat dalam mengklasifikasikan individu berisiko tinggi 

hipertensi, dengan nilai precision 0,93 dan recall 0,92, serta 

nilai F1-score yang konsisten sebesar 0,92. Hasil ini 

membuktikan bahwa model stacking ensemble ini lebih 

optimal dibandingkan dengan model-model sebelumnya yang 

menggunakan algoritma seperti Artificial Neural Network 

(ANN) dan XGBoost, yang masing-masing hanya mencapai 

akurasi 85% dan 88,8%. 

Analisis Training vs Testing Accuracy menunjukkan tidak 

ada indikasi overfitting pada seluruh model pada peneltian ini, 

selisih akurasi latih uji konsisten pada rentang Δacc sekitar 

0,06–0,08 untuk masing-masing base learner maupun model 

stacking. Konsistensi ini mengindikasikan kemampuan 

generalisasi yang baik. Lebih jauh, confusion matrix model 

stacking (TN 426, FP 50, FN 17, TP 411) menegaskan bahwa 

FP terendah dan TN tertinggi dicapai tanpa mengorbankan 

kemampuan menangkap kasus berisiko tinggi (FN tetap 

rendah), sehingga kualitas klasifikasi lebih kuat dibandingkan 

tiap base learner secara terpisah. 

Untuk memberikan gambaran lebih lanjut mengenai 

performa model, analisis menggunakan confusion matrix 

dilakukan, yang menunjukkan bahwa meskipun model ini 

menunjukkan akurasi yang cukup tinggi, masih ada beberapa 

kesalahan klasifikasi yang perlu diperbaiki. Model berhasil 

mengidentifikasi sebagian besar individu dengan risiko tinggi 

(kelas 1), namun juga menghasilkan kesalahan klasifikasi 

pada individu dengan risiko rendah (False Positive) dan 

beberapa individu berisiko tinggi yang tidak teridentifikasi 

(False Negative). Meskipun demikian, penelitian ini 

memberikan kontribusi yang signifikan dalam pengembangan 

model prediksi risiko hipertensi, dan validasi eksternal 

dengan dataset yang lebih beragam serta upaya pengurangan 

kesalahan klasifikasi akan meningkatkan keakuratan dan 

efektivitas model ini lebih lanjut. 
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