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  Abstract 
Classification of seabed types from multibeam echosounder data using 

machine learning techniques has been widely used in recent decades, such as 
Random Forest (RF), Artificial Neural Network (ANN), Support Vector Machine 
(SVM), and Nearest Neighbor (NN). This study combines the two most frequently 
used machine learning techniques to classify and map the seabed sediment types 
from multibeam echosounder data. The classification model developed in this study 
is a combination of two machine learning classification techniques, namely Support 
Vector Machine (SVM) and K-Nearest Neighbor (K-NN). This classification 
technique is called SV-KNN. Simply, SV-KNN adopts these two techniques to carry 
out the classification process. The SV-KNN technique begins with determining test 
data by specifying support vectors and hyperplanes, as was done on the SVM 
method, and executes the classification process using the K-NN. Clay, fine silt, 
medium silt, coarse silt, and fine sand are the five main classes produced by 
SVKNN. The SV-KNN method has an overall accuracy value of 87.38% and a 
Kappa coefficient of 0.3093. 
 
Keywords: acoustic multibeam data, Jakarta Bay, multibeam echosounder, 
seabed classification, support vector machine, SV-KNN 

 
1. Introduction 

Underwater detection techniques are increasingly 
developing nowadays. Underwater detection utilizing 
acoustic technology (hydroacoustic) is increasingly 
being adopted for industrial activities and scientific 
purposes (Solikin et al., 2020). Various examples of 
underwater detection activities utilizing 
hydroacoustic technology encompass bathymetry 
(sea depth) measurements, location detection of fish 
assemblages (fishing), bottom substrate profiles, 
underwater communication, positioning, and 
tomographic networks (Lurton, 2002). One of the 
interesting subjects that can be examined through 
this hydroacoustic technology is the detection of the 
seabed surface. 

Hydroacoustic technology, particularly the swath 
technique, is very convenient as the leading source 
of information on water bathymetry and seabed 
morphology (Tegowski et al., 2011). The 
hydroacoustic is one of the underwater remote 
sensing approaches that provides a foundation for 

identifying, classifying, and mapping resources on 
the seabed (Manik, 2012). Multibeam echosounder 
system (MBES) -as one of the hydroacoustic 
technology tools- is adopted for these multiple 
purposes because of the technological advances 
presented in this instrument, such as very broad area 
coverage, high resolution produced, and being able 
to reach deep and wide areas (Che Hasan et al., 
2014). 

Nonetheless, the evolution of well-established, 
consistent, quantitative, and objective methods for 
the analysis of swath acoustic data lags behind the 
remarkable strides made in the collection of high-
quality acoustic multibeam data. Anderson et al. 
(2008) highlighted the pressing issue of the 
classification of acoustic seabed, pinpointing the 
glaring gap in statistical and objective methodologies. 
Currently, it remains a common practice to rely on the 
discerning 'eye' of experts for acoustic data 
interpretation. However, recent years have seen a 
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growing interest in automated techniques, driven in 
part by the undeniable advantages of employing 
objective classification algorithms that mitigate 
subjectivity. A multitude of methods have been 
rigorously tested, ranging from random forests (Che 
Hasan et al., 2012a) and support vector machines 
(Che Hasan et al., 2012b; Lucieer et al., 2013) to 
artificial neural networks (Marsh & Brown, 2009; 
Huang et al., 2013), maximum likelihood 
classification (Brown et al., 2011), Bayesian decision 
rules (Simons & Snellen, 2009), and decision trees 
(Che Hasan et al., 2012). Remarkably, only a limited 
number of studies have undertaken the crucial task 
of comparing multiple automated seabed mapping 
techniques, with just five such studies published thus 
far (Che Hasan et al., 2012; Ierodiaconou et al., 2011; 
Diesing et al., 2014; Snellen et al., 2018; Cui el al., 
2020). This indicates the ongoing need for further 
exploration and refinement of automated 
methodologies to advance our understanding of the 
acoustic seabed classification. 

In this study, we exert the combination of two 
classification methods (SVM and NN) to predict 
seabed type in Jakarta Bay based on acoustic MBES 
data and seabed samples. This combination was 
named SV-KNN as a combination of the two recent 
classification methods. We try to compare two 
methods (SVM and this combination method) in 
terms of the thematic accuracy and spatial depiction 
of predicted seabed sediment types. 
 

2. Methods 

2.1 Study Area and Survey Information 

The study area covers a small area in Jakarta 
Bay, specifically on the north side of the reclamation 
island named G-Island (Figure 1).  

 
Figure 1. Survey area in The G-Island, Jakarta Bay. The 

data acquisition path using the MBES instrument is shown 
by the black line. The survey area is divided into three 

areas, namely areas A, B, and C 

 
A marine survey was conducted in the area in 

2016 (Solikin et al., 2020) to collect acoustic 
multibeam data and sediment samples. A fisherman 
vessel of 12 x 2.5 meters was used for the survey. 
There are 8 main survey lines and the space between 
lanes ranges from +100 meters. 

During the survey, the SIMRAD Kongsberg EM 
2040 multibeam echo-sounder was used to collect 
both bathymetry and backscatter data in shallow 
waters, from 9 to 17 m depth with a vertical resolution 
of 1 cm. Teledyne TSS DMS-05 motion sensor was 

used to rectify the MBES data for vessel movement, 
bow aberration, and GPS delay correction. It has a 
slant and bobbing accuracy of 0.05°. Veripos DGPS 
was used to determine the position, and at a 
confidence level of 95%, it had a horizontal precision 
of 0.13 meters and a vertical accuracy of 0.32 meters. 
Automatic Data Logging (ADL) Hydro-Pro and 
Seafloor Information System (SIS) software were 
used as navigation systems and data collecting, 
respectively. 

 
2.2 Sediment Sample Acquisition 

In addition to the MBES data, sediment samples 
were also gathered to be used as validation data for 
the classification of sediments based on their geo-
acoustic characteristics. Seven sediment samples 
were taken, and they were distributed at random 
around the study area. Sediment samples were taken 
using grab samplers. They are only taken from the 
water's bottom surface due to the grab sampler's 
restricted ability to reach deeper into the sediment 
layer. The procedure started with the collection of 
sediment samples, placing them in plastic samples, 
and a laboratory examination of the particle size. 

Wet sieving was used to separate the sediment's 
grain size depending on the grain size fraction during 
the analysis of the sediment sample. Each fraction 
was divided into the following according to 
Shephard’s triangle (Shepard, 1954) (Figure 2) 
where each fraction was divided into: 

1. Gravel (gravel) fraction: a mixture of rock and 
gravel material 

2. Sand fraction (sand): a mixture of fine sand to 
coarse sand material 

3. Mud fraction: a mixture of clay and silt material 

 
  

Figure 2. Shephard’s triangle diagram 
Source: Shepard (1954) 

 
Secondary data was also collected from the 

Pusat Hidro-Oseanografi TNI AL (Pushidrosal) based 
on data from 2016 along with the sediment sample 
data to identify the types of sediment in Jakarta Bay 
waters that had been processed by Sediment 
Analysis Tools in CARIS 9.0 software. To add 
validation to the MBES data obtained, this secondary 
data was placed next to the original sediment sample 
data. According to data from the Indonesian Navy 
Hydrography and Oceanography Center from 2016, 
clay predominates in the waters of Jakarta Bay 
(Table 1). 
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Table 1. Number of points and sediment types in Jakarta 
Bay 

Number Sediment type Number of points 

1 Clay 3276 

2 Clayey sand 14 

3 Coarse silt 62 

4 Fine silt 25 

5 Medium silt 16 

6 Sandy clay 15 

7 Sandy mud 10 

8 Sandy silt 89 

9 Silty clay 13 

10 Very fine sand 1 

Source: Pushidrosal (2016) 
 

2.3 Support Vector Machine K-Nearest Neighbor 
Classifications 

Nearest Neighbor (NN) classification is one of the 
most popular classification methods to use (Wu & 
Kumar 2009). The NN algorithm performs 
classification based on the similarity of data with 
other data (Tan et al., 2006). SV-KNN classification 
is a combination of two methods, namely K-NN and 
Support Vector Machine (SVM). The advantage of 
this method is that it can reduce a large amount of 
data and improve classification results (Srisawat et 
al., 2006). 

According to Prasetyo (2014), SV-KNN uses a 
Support Vector Machine (SVM) to obtain a support 
vector (SV) from the initial data to classify the data. 
Therefore, the SV obtained is a representation of the 
entire data, but the SV obtained from the SVM is a 
representation for each class in the high dimension 
(feature space) and some of the SV may not be 
suitable as input data for the K-NN classification. 

To overcome this problem, it is necessary to re-
examine the contribution of SV to the classification in 
the initial dimensions before using it to make 
classification predictions. The weight (w) is used to 
determine the contribution of each SV. SV with a 
higher weight becomes more reliable and will have a 
greater influence on K-NN predictions. 

The weighting process begins by providing an 
algorithm to partition all SVs into pre-defined clusters 
(grouping data). After the data is grouped, each 
instance in the cluster is given a weight according to 
the proportion of the class labels of the instances in 
the cluster. The sample weight xi expressed by wi is 
given in Equation (1): 

 

𝑤𝑖 =
𝑛(𝑐𝑙𝑎𝑠𝑠(𝑥𝑖))

𝑇𝑜𝑡𝑎𝑙
    (1) 

 
i = 1, 2, …, m (m is the sum of all SVs), while 

n(class(xi)) is the number of samples in the cluster 
that have the same class label as sample xi. Total is 
the total number of samples in the cluster. The 
prediction process is carried out using the classic K-
NN algorithm and only the weighted SV which is 
calculated in the previous process is used as K-NN 
input data. When data is entered, K-NN looks for the 
nearest K number of instances of the SV set. The 

classification framework using the SV-KNN model is 
shown in Figure 3. 

 

 
 

Figure 3. SV-KNN classification framework 

 
2.4 Data and Model Correlation 

The accuracy level of the classification models 
with ground truth data was compared using a 
statistical examination of the Kappa coefficient. The 
Kappa coefficient was invented by Cohen (1960). 
The Kappa coefficient, which was developed for use 
in remote sensing research in the early 1980s 
(Congalton & Mead, 1983; Congalton, 1991), has 
proven to be a valuable test for determining the 
accuracy of object classification results. The level of 
agreement between two evaluators when classifying 
items into categories, as well as the differences in 
agreement between novel techniques and old 
methods, can be analyzed using the Kappa 
coefficient. The equation to calculate the Kappa 
coefficient is Equation 2. 

 

𝜅 =
𝑁∑ 𝑋𝑖𝑖−∑ 𝑋𝑖+𝑋+𝑖

𝑟
𝑖=1

𝑟
𝑖=1

𝑁2−∑ 𝑋𝑖+𝑋+𝑖
𝑟
𝑖=1

   (2) 

where 

𝜅  : Kappa coefficient; 
N  : number of observations; 
Xii  : observation in i-th row i-th column; 
Xi+  : marginal total in i-th row; 
X+i  : marginal total in i-th column. 
A simpler equation is shown in Equation (3):  
 

𝜅 =
𝑝0−𝑝𝑒

1−𝑝𝑒
    (3) 

where 

𝑝0= accuracy of the agreement observed, 
∑𝑋𝑖𝑖

𝑁
, 

𝑝𝑒= estimation of chance of agreement, 
∑𝑋𝑖+𝑋+𝑖

𝑁2
 . 

The Kappa coefficient value classification 
classifies class results into 5 classes: bad, fair, 
moderate, good, and very good (Altman, 1991). 

Mosaic backscatter data 

Support Vector Machine 

SV 

K-NN classes 

SV weight 

K-NN classification 

Seabed sediment type classification 
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Table 2 provides an interpretation of the types of 
kappa coefficient value distribution. 

 
Table 2. Classification of closeness of agreement Kappa 

coefficient value 

𝜿-value Strength of agreement 

< 0.20 

0.21 – 0.40 

0.41 – 0.60 

0.61 – 0.80 

0.81 – 1.00 

Poor 

Fair 

Moderate 

Good 

Very good 

Source: Altman (1991) 

 

3. Results and Discussion 

The classification model developed in this study 
is a combination of two machine learning 
classification techniques, namely Support Vector 
Machine (SVM) and K-Nearest Neighbor (K-NN). 
This classification technique is called SV-KNN. 
Simply put, SV-KNN adopts these two techniques to 
carry out the classification process. The SV-KNN 
technique begins with determining the test data by 
determining the support vector and hyperplane, as is 
done in the SVM method, and executing the 
classification process using the K-NN technique. 

The initial stages are the same as the stages in 
SVM is reducing data, determining training data, and 
determining test data, until finally determining the 
class used in classification. Similar to the SVM 

technique, the SV-KNN technique also produces 5 
main classes, namely clay, fine silt, medium silt, 
coarse silt, and fine sand. 

After going through the initial stages, for the 
classification process, another classification 
technique is used, namely K-NN. The basic 
difference between K-NN and SVM in carrying out 
the classification process is the determination of the 
number of K-neighbors used. In contrast to SVM 
which does not use neighboring factors in the 
classification process, the K-NN technique makes 
neighboring factors a consideration in determining 
the classification of a point. In this study, after 
repeated iterations, the value of K as a neighbor is 
obtained, which is used as a consideration of 3 
iterations. 

Figure 4 displays labels for clay sediments in dark 
blue, fine silt in light blue, medium silt in green, 
coarse silt in orange, and fine sand in red. The SV-
KNN classification technique was also examined for 
accuracy to evaluate how well the classification 
model matched the field data and how accurate it 
was. Similar to other categorization procedures, this 
was carried out. The accuracy test employed in this 
method is the Kappa coefficient test, which was also 
utilized in the previous classifications. The Kappa 
test-derived overall accuracy value for the SV-KNN 
algorithm is 0.87, with a 95% confidence level 
agreement of chance value of 0.82. The accuracy 
number for classification is quite high at 0.87, which 
indicates that this method was successful in correctly 
classifying the data for 87.38% of the data. 

Figure 4. Classification of sediment types in the G-Island waters using the SV-KNN method 

 
This study's Kappa coefficient value is 0.31. This 

value is classified into the fair class of the strength of 
agreement variable. The producers' accuracy and 
the user's accuracy numbers are also computed as 
part of this method's accuracy test. The producer’s 
accuracy is classification accuracy as viewed from 
the producer's perspective. On the other side, the 
user's accuracy is the classification accuracy as 
perceived from the perspective of the map user, not 

the map maker.. It demonstrates how frequently the 
classification results are displayed accurately 
spatially or the likelihood that a benthic habitat in an 
area is categorized correctly. The user's accuracy 
demonstrates how frequently the situation depicted 
on the map corresponds to real conditions. Table 3 
lists the classifications derived from the SVM 
classification results along with the producer’s and 
user’s accuracy values for each class. 
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The values of the producer's accuracy and the 
user's accuracy are not equal, as shown in Table 3. 
For instance, the producer's accuracy value for the 
clay class in this study's application of the SV-KNN 
method is 92.98%, whereas the user's accuracy 
value is 98.61%. As many as 98.61% of the points 
labeled "clay" actually fit the categorization for clays, 
indicating that 92.98% of the clay classes were 
correctly designated as "clay." The remaining four 
classes were incorrectly assigned to a total of 1.39% 
of the points. Naturally, this outcome is classified as 
having a rather high accuracy value. This is a 
consequence of the clay class predominates in the 
study region. 

The producer's accuracy value for the coarse silt 
class is 37.10%, whereas the user's accuracy value 
is 16.08%. This shows that just 16.08% of areas 
classified as "coarse silt" actually matched into the 
category of coarse silt, whereas 37.10% of the 
coarse silt class were correctly identified as distinct. 
A total of 83.92% of the points (clay, fine silt, medium 
silt, and fine sand) were incorrectly assigned to other 
groups.  

We compare this result with the previous 
research (Solikin et al., 2020), the SVM method 
produces high accuracy, although some classes 
cannot be logged. The level of accuracy achieved by 
this method is 80.25%. This high accuracy value is 
evidence of the success of SVM in classifying the 
most dominant class, namely clay. The Kappa 
coefficient value of this method is 0.2031. In the 
categorization of the closeness of the agreement, the 
value is classified into a fair or moderate class. SVM 
still necessitates to be tested in regions with a high 
degree of heterogeneity to prove the level of 
accuracy and closeness of agreement that has been 
reached so far. Meanwhile, the performance shown 
by the SV-KNN method is not much different from the 
SVM method, but there is progress in this method. 
This high accuracy value must be re-tested in 
different areas and with different instruments. It is 
intended to see the true potential of this method. 

 
 

  

Table 3. Producer's accuracy and user's accuracy values from the class classification results from the SV-KNN method

Classes 
Number of points 

classified correctly 

Number of 

reference 

points 

Number of 

classification 

points 

User's 

accuracy (%) 

Producer's 

accuracy (%) 

Clay 3046 3276 3089 98.61 92.98 

Fine Silt 2 25 45 4.44 8.00 

Medium Silt 4 16 239 1.67 25.00 

Coarse Silt 23 62 143 16.08 37.10 

Fine Sand 1 1 5 20.00 100.00 

4. Conclusions  

The SVM method produces an accuracy rate of 
80.25% with a Kappa coefficient of 0.2031. The SV-
KNN method produces an accuracy rate of 87.38% 
with a Kappa coefficient value of 0.3093. From the 
accuracy level and Kappa coefficient of these two 
methods, it can be determined that the SV-KNN 
method produces the best classification process 
compared to the SVM. Based on the classification 
results and the accuracy value produced by the SV-
KNN method, it can be concluded that this method is 
suitable for use as a machine learning-based 
classification method that can be applied in 
classifying seabed substrate types. The classification 
process is not too tough and the performance is quite 
good, making the SV-KNN method an alternative 
method in addition to the existing machine learning-
based classification methods for classifying seabed 
sediment types.  
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