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  Abstract 
This research aimed to integrate a Digital Elevation Model (DEM) using four 

different input data scenarios to determine the accurate position of the coastline. 
The study used elevation data from single-beam echosounder (SBES), multi-beam 
echosounder (MBES), satellite derived bathymetry (SDB), and the National Digital 
Elevation Model (DEMNAS) to produce the DEM. The accuracy of the resulting 
coastline was then assessed by comparing it to a reference coastline provided by 
the Indonesian Geospatial Information Agency (BIG). The results showed that the 
specifications and quality of the input data greatly influenced the accuracy of the 
DEM integration results. The integration of SBES and MBES data blended well and 
the inclusion of bathymetry data improved the representation of deeper areas. The 
first scenario, which involved three datasets (SBES, bathymetry, and elevation data 
from DEMNAS), had the highest accuracy with 69.86% of the total area categorized 
as acceptable compared to the reference coastline. The results also showed that 
Root Mean Square Error (RMSE) values indicated the lowest accuracy of the 
model, but RMSE is just one metric used to evaluate the accuracy of the coastline 
model and other measures should also be considered. This research highlights the 
importance of careful examination of input data for accurate integration of DEM and 
the accurate assessment of coastline models. 
 
Keywords: Coastline, Integration of multiple dataset, Accuracy, Digital Elevation 
Model, Root Mean Square Error 

 

 

1. Introduction 

The coastal zone, also referred to as the coastal 
area, is the transition area between land and sea (Xu 
et al., 2016). It encompasses many environments and 
landscapes, including shorelines, coastal islands, 
estuaries, bays, dunes, forests, and tidal waters. It is 
important to note that the boundary between the 
coastal zone and the sea is not permanent and can 
change daily due to tides, moon phases, seasons, 
storms, and river floods (Emery and Aubrey, 1991). 
Natural and human-made factors dynamically 
influence the coastal zone, so it is vital to monitor and 
understand the changes in this region. 

(Oertel, 2005) has characterized the coastline as 
a dividing line between land and sea on both regional 
and global levels, while the shoreline encompasses all 
of the shore's distinctive features. Consequently, the 
precise location of the coastline is critical for coastal 
zone planning and management purposes, including 
land use and cover classification, coastal erosion 

analysis, and environmental monitoring (Stanchev et 
al., 2011). Additionally, information about the coastline 
is crucial for inventorying natural resources and 
identifying areas most susceptible to hazards. 
Nonetheless, determining the accurate position of the 
coastline is challenging due to its dynamic 
environment. Factors that affect coastline length and 
its accurate position include the geological structure of 
the coast, the scale of geographical spatial data, the 
type and resolution of spatial data, the map projection 
used, map generalization, measuring units, and 
horizontal and vertical data for geographical 
coordinates (Monmonier, 2008). 

The position of coastlines has been studied and 
determined using a variety of methods in the literature. 
Traditional ground survey methods were widely used 
and produced accurate results (Crowell et al., 1991). 
However, these methods were expensive in terms of 
time and resources (Morton et al., 1993). Later, aerial 
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photographs were introduced and further replaced by 
stereo aerial photographs (Moore, 2000). In recent 
times, new methods such as LIDAR-based (Bretel et 
al., 2013; Kim et al., 2018; Sesli and Caniberk, 2015; 
Soeksmantono et al., 2021; White and Wang, 2003) 
and satellite-based techniques, such as the water 
index method (Choung and Jo, 2017; Hu et al., 2012; 
Lan et al., 2022; Yun-Jae, 2017), band ratio 
techniques (Khalifeh et al., 2007; Paengwangthong, 
2021; Pirasteh et al., 2005; Saied et al., 2005), and 
classification method (Taha and Elbeih, 2010; 
Tamassoki et al., 2014) have been introduced. It is 
crucial to determine proxies or indicators that can 
identify the coastline position based on the area's 
topography, data source, and scientific preferences to 
extract coastline information from any data source 
(Dewi, 2019). 

The objective of this research is to identify 
coastlines by integrating multiple datasets, such as 
the elevation data obtained from single-beam 
echosounder (SBES), multi-beam echosounder 
(MBES), 10 m resolution satellite bathymetry, and the 
0.27" spatial resolution National Digital Elevation 
Model (DEMNAS). Based on a geoid model, the Mean 
Sea Level is adopted as the tidal datum and reference 
level for all data. The assimilation of the data is 
performed using GMT Surface. The accuracy of the 
resulting coastline is then assessed by comparing it to 
the reference coastline, derived from a coastal map 
produced by the Indonesian Geospatial Information 
Agency (Badan Informasi Geospasial – BIG) in 2018. 
 

2. Methods 

This research focuses on extracting coastlines at the 
Tanjung Kelayang coastal area. Tanjung Kelayang is 
a popular marine tourism destination located on 
Belitung Island in the Bangka Belitung Province of 
Indonesia (as seen in Figure 1) with coordinates 
2º34’1.2” S and 107º38’9.6” E. The seabed substrate 
of the area is sandy, and the tide is diurnal, with a 
range of approximately 2.4 m. During the dry season 
(June to August), the surface current flows from 
southeast to northwest, while during the wet season 
(December to February), it flows from north to 
southeast. 

This study uses bathymetry, and topographic data 
adjusted to the Mean Sea Level (MSL) obtained from 
BIG tides prediction (Badan Informasi Geospasial, 
2019). The data sources include Single-beam 
Echosounder (SBES) SyQwest Bathy-500MF, Multi-
beam Echosounder (MBES) Teledyne Odom MB2, 
and shallow water bathymetry data from Satellite 
Derived Bathymetry (SDB). The SBES and MBES 
data were obtained from the Indonesia Geospasial 
Information Agency, while the SDB data was obtained 
from a previous study (Dewi et al., 2019). Dewi et al. 
(2019) used a random forest algorithm to extract depth 
information from Sentinel 2A with 500 trees and one 
variable at each split, resulting in a variance explained 
by the model of 99.54% with an RMSE value of 0.11m. 

The data acquisition year can be found in Table 1. The 
topographic data was obtained from the 0.27 arc-
second spatial resolution National Digital Elevation 
Model (DEMNAS) (Badan Informasi Geospasial, 
2018) processed from multiple input data sources 
such as ALOS PALSAR, IFSAR, and TERRASAR-X 
with vertical datum EGM2008. The study also uses a 
coastline reference from a 1:25000 coastal map from 
the Indonesia Geospasial Information Agency (BIG) to 
validate the model. 

 

 
Fig 1. Study Area in Belitung Island, Bangka Belitung 

Province, Indonesia. 

 
Table 1. Data acquisition date from every source 

Source Year acquisition 

SBES 2018 

MBES 2018 

SDB July 2019 

 
This study utilized the continuous curvature 

splines in the tension interpolation method to 
construct a grid of multiple datasets with varying 
resolutions (Hell and Jakobsson, 2011). The grid 
represents regular-spaced spatial values created 
through subsampling, interpolation, and extrapolation 
principles in two dimensions. Interpolation estimates 
values using the closest sample values, known as 
spatial autocorrelation (DeWitt, 2022), and aims to 
minimize data gaps in the gridded data from different 
resolution sources. The outcome of constructing the 
grid from multiple-resolution data is an integrated 
Digital Elevation Model (topographic and 
bathymetric). This integrated DEM can then be used 
to extract the coastline. 

This study used four datasets with different spatial 
resolutions and densities (Figure 2). The first dataset 
was recorded in 2018 and collected using a Single-
beam echosounder (SBES) with a point density of 1 m 
and a line survey interval of 200 m. The second 
dataset was collected using a multibeam echosounder 
(MBES) with a 5 m raster grid. The third dataset was 
a Satellite-derived bathymetry (SDB) with 10 m spatial 
resolution obtained from Sentinel 2. The last dataset 
was the National Digital Elevation Model (DEMNAS), 
with a spatial resolution of 8.1 m (0.27 arc-seconds).  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig 2. Input data used for this research : (a) Multibeam echosounder data, (b) Singlebeam echosounder data, (c) Satellite 
Derived Bathymetry Data, (d) DEMNAS  

 

This study's entire data processing was 
conducted using the open-source Generic Mapping 
Tools (The GMT Developers, 2019). The data has a 
small scale but has a large coverage serving as a 
preliminary basis to accumulate more data. While for 
more detailed data, the resolution of the data is 
maintained until the final grid determination. The 
grids were first piled up using the grdstack function at 
GMT, with different resolutions for each dataset. 
Next, the surface masking function was implemented 
to determine the number of grid cells with limited 
data. Finally, the empty value was defined as "NaN" 
if a grid value was not met (Hell and Jakobsson, 
2011). The Final result of this step is a raster file. The 
general workflow of generating the coastline in this 
study can be found in Figure 3. The illustration of grid 
stacking and surface masking can be seen in Figure 
4. 

 
Fig 3. The general workflow of generating coastline in this 

study 

This study employed four different scenarios in its 
data processing. These scenarios were determined 
by the input data used in the modeling. The first 
scenario utilized three datasets: single-beam 
echosounder (SBES), bathymetry data from Sentinel 
2 (SDB), and topographic data from the Digital 
Elevation Model DEMNAS. The second scenario 
involved using multi-beam echosounder (MBES) 
data, bathymetry data from SDB, and topographic 
data from DEMNAS. The third scenario incorporated 
MBES, SBES, and topographic data from DEMNAS. 
Finally, the fourth scenario utilized bathymetry data 
from SDB, topographic data from DEMNAS, and 
echo-sounding data from both SBES and MBES. All 
scenarios can be seen in Table 2. 

 
Fig 4. Ilustration of grid stacking (a) and surface masking 

(b). Source: (Hell and Jakobsson, 2011) 
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Table 2. Data used in every scenario for the modeling 
Scenario Model Data Processing 

1 SBES, SDB, DEMNAS 

2 MBES, SDB, DEMNAS 

3 SBES, MBES, DEMNAS 

4 SBES, MBES, SDB, DEMNAS 

 

The model's accuracy was assessed using a 
method outlined in (Tveite, 1999). Multiple ring 
buffers were created in ArcGIS using the model 
coastlines and reference coastline from Indonesian 
Coastal Environment Map (LPI) as input. All 
experiments used ten buffer sizes ranging from 1 m 
to 10 m (the maximum assumed error equal to 
Sentinel 2A pixel size). The buffer polygons from both 
coastlines were intersected using the union 
command, and statistics were calculated. The results 
were visualized in a spreadsheet program. The Root 
Mean Square Error (RMSE) was also calculated to 
measure the difference between the model coastline 
and the reference coastline in square meters (m²). 
The RMSE can be used to evaluate the accuracy of 
the coastline model, with a low RMSE value 
indicating accurate predictions and a high value 
indicating poor predictions (Chai and Draxler, 2014). 

 

3. Results and Discussion 

3.1 The DEM Integration Visualization  

The Digital Elevation Model (DEM) integration 
was visualized through four different scenarios, as 
shown in Figure 5. The specifications and quality of 
the input data, such as coverage, position, and 
spatial detail, influence the variations in the DEM 
integration results. As seen in Figure 5a, integrating 
single-beam echosounder (SBES) and multi-beam 
echosounder (MBES) data provides good 
visualization and blends well. On the other hand, 
Figures 5b to 5d illustrate that MBES data provides 
more detailed depth information due to its 5 m raster 
grid resolution. Adding bathymetry data from the SDB 
results in representing deeper areas, as indicated by 
the blue pixels in Figures 5a, b, and d. Therefore, it is 
crucial to carefully check the input data, particularly 
to ensure that all input data are in the raster data 
format. 

The results of the DEM integration shown in 
Figure 5 were used to generate coastlines, as shown 
in Figure 6. All scenarios produce similar coastlines. 
However, some differences are still noticeable, for 
example, the coastline of small islands (as seen in 
grid cells 2B, 3C, and 1E in Figure 6). 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig 5. Visualization comparison of DEM integration results based on four input-data scenarios; a) scenario 1 using SBES, 
SDB, and DEMNAS; b) scenario 2 using MBES, SDB, and DEMNAS; c) scenario 3 using MBES, SBES, and 
DEMNAS; and d) scenario 4 using, SBES, MBES, SDB, and DEMNAS 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig 6. Visualization comparison of coastline model based on four input-data scenarios; a) scenario 1, b) scenario 2, c) scenario 
3, and d) scenario 4 

 
3.2 Accuracy Assessment of Coastline Models 

and Error Evaluation 

The results of the accuracy assessment of the 
coastline models are shown in Figure 7. The 
accuracy is determined by comparing the buffer area 
generated along the coastlines with the reference 
coastline. The highest accuracy value is given by 
using the first scenario, which involves three 
datasets: SBES, SDB, and elevation data from 
DEMNAS. In the first scenario, the model obtained 
the largest error values for the displacement around 
1 m from the reference coastline. Therefore, it implies 
that the model has high accuracy. Thus, 69.86% of 
the total area can be categorized as acceptable 
relative to the reference. The second and third 
scenarios have lower results than the first. Similar to 
the first scenario, the largest error value for the 
displacement was around 1 m from the reference 
coastline. However, the third scenario has the lowest 
accuracy of only 65.45%. The complete accuracy 
assessment results of this research based on four 
scenarios are presented in Table 3. 

The Table 4 shows the Root Mean Square Error 
(RMSE) values of four different scenarios for the 
coastline models. The RMSE is a measure of the 
difference between the scenario results and the 
reference coastline. The lower the RMSE value, the 
more accurate the coastline model is in predicting the 
coastline shape and extent. 

In this case, Scenario 1 has the highest RMSE 
value of 0.0706 m², indicating the lowest accuracy of 
the model. Meanwhile, Scenarios 2, 3, and 4 have 

RMSE values of 0.0662 m², 0.0662 m², and 0.0668 
m² respectively, which are slightly higher accuracy 
than Scenario 1. However, it is important to note that 
RMSE is just one metric used to evaluate the 
accuracy of the coastline model, and other measures 
should also be considered to get a comprehensive 
understanding of the model's performance. 

 

 
Fig 7. Accuracy test graph for each scenario relative 

to the reference coastline 
 

Table 3. Assessment results of coastline models 

Scenario 
Accuracy (%) 

0 - 5 m 5 - 10 m > 10 m 

1 39.37 30.49 30.14 

2 36.95 28.53 34.52 

3 36.96 28.49 34.55 

4 37.37 28.69 33.95 
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Table 4.RMSE of coastline models 

Scenario RMSE (m2) 

1 0.0706 

2 0.0662 

3 0.0662 

4 0.0668 

 
3.3 Discussion 

The results of this research aimed to integrate a 
Digital Elevation Model (DEM) using four different 
scenarios. The results showed that the specifications 
and quality of the input data, such as coverage, 
position, and spatial detail, greatly influence the 
variations in the DEM integration. The integration of 
single-beam echosounder (SBES) and multi-beam 
echosounder (MBES) data provided a good 
visualization and blended well (Ahmed, 2012). 
Adding bathymetry data from the SDB improved the 
representation of deeper areas. However, the 
importance of examining the input data carefully to 
ensure that it is in the raster data format cannot be 
overstated. 

The results also showed that all scenarios 
produced similar coastlines, but some differences 
were noticeable in small island coastlines. The 
accuracy of the coastline models was assessed by 
comparing the buffer area generated along the 
coastlines with the reference coastline. However, all 
quality measures in this study were affected by errors 
generated from fragmentations and noises (Goeman 
et al., 2005), so more data is needed to improve the 
accuracy of the coastline model. 

The results align with related research, 
suggesting that integrating multiple datasets can 
improve the accuracy of coastline models 
(Kostopoulou, 2021). However, the results also 
indicate that adding more data does not guarantee 
an improvement in accuracy, as all quality measures 
were affected by errors generated from 
fragmentations and noises. 

The results showed that integrating SBES and 
MBES data in Scenario 1 provided good visualization 
and blended well. However, the inclusion of 
bathymetry data from the SDB did not significantly 
improve accuracy as measured by the assessment 
results and RMSE values. Further research may be 
necessary to identify other factors that affect 
coastline models' accuracy and determine the 
optimal methods for integrating DEM data to 
generate accurate coastline models. 

 

4. Conclusion 

 
This research aimed to integrate a Digital 

Elevation Model (DEM) using four different input data 
scenarios and to assess the accuracy of the resulting 
coastline models. The results showed that the 
specifications and quality of the input data greatly 
influence the variations in the DEM integration 
results. Integrating single-beam echosounder 
(SBES) and multi-beam echosounder (MBES) data 
blended well and including bathymetry data from the 
SDB improved the representation of deeper areas. 
The accuracy assessment results showed that the 
first scenario, which involved three datasets (SBES, 

SDB, and elevation data from DEMNAS), had the 
highest accuracy, with 69.86% of the total area 
categorized as acceptable relative to the reference 
coastline. However, all quality measures presented 
were affected by errors generated from 
fragmentations and noises. 

The Root Mean Square Error (RMSE) values 
showed that Scenario 1 had the highest RMSE value, 
indicating the lowest accuracy of the model. 
However, it is important to note that RMSE is just one 
metric used to evaluate the coastline model's 
accuracy. Other measures should also be considered 
to understand the model's performance 
comprehensively. 

Overall, the results of this research highlight the 
importance of careful examination of input data to 
ensure that it is in the correct format and of good 
quality for accurate integration of DEM and for the 
accurate assessment of coastline models. The 
results also provide valuable insights for future 
coastal mapping and management research. 
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