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  Abstract 
This study developed a dynamic, web-based integrated spatial disaster profile 

database system that is highly vulnerable to various types of natural hazards, using 
Lebak Regency as a case study. The reference for each profile displayed is the 
Indonesian Disaster Risk (RBI). The output of this study is a web performance 
overview consisting of an interactive HTML-based frontend integrated with the 
backend spatial data management using MongoDB, Python, and JavaScript. This 
system provides district-level statistical summaries, visualizations with thematic 
classifications, and an automatic update feature via API simulation. In addition, this 
system integrates spatial and non-spatial data. Based on the evaluation, this 
system improves the effectiveness of data collection and utilization, supports 
evidence-based decision making, and strengthens cross-sector collaboration. The 
use of a non-relational database architecture optimized for dynamic spatial data 
with synchronous updates and web-based distribution is a major innovation with 
the hope of creating a standardized and adaptive disaster information system that 
can be replicated in other regions with similar risks. 
 
Keywords: geographic information system, disaster management, non-relational 
database, data integration 

 

 
1. Introduction 

Indonesia’s geographical location, geological 
conditions, and complex climatic factors make it one 
of the countries with the highest vulnerability to natural 
disasters in the world (Hutchings and Mooney, 2021; 
Wibowo et al., 2024). This archipelagic country is 
located at the meeting point of three major tectonic 
plates, has many active volcanoes, and is prone to 
hydrometeorological disasters such as floods, 
landslides, droughts, and forest fires. Data from the 
National Disaster Management Agency (BNPB) 
shows that the number of disasters in Indonesia has 
never been less than 3,500 incidents per year in the 
last four years (Paskalis, 2025). 

 
One of the areas with high vulnerability is Lebak 

Regency, Banten Province. This location is close to 
the Sunda Strait Subduction Zone, which has the 
potential for megathrust earthquakes, as evidenced 
by the tsunami that occurred in 2018. In addition, the 
Lebak Regional Disaster Management Agency 
(BPBD) recorded 392 disasters throughout 2024, 
including floods, landslides, fires, and coastal erosion, 
which caused damage to thousands of homes and 
infrastructure and resulted in fatalities (Suryana, 

2025). The complexity of these geological and 
hydrometeorological threats makes Lebak a 
representative study area for disaster risk 
management research. 

 
Disaster risk management is a comprehensive 

effort based on actual conditions using a number of 
resources in the form of data. A set of data is used to 
describe the conditions of an area, which are then 
linked to various types of disasters. This is referred to 
as a profile. When visualized in spatial dimensions, 
the profile is referred to as the spatial profile of an 
area. The existence of spatial data containing 
information on the profile of an area aims to support 
exposure analysis in the disaster risk assessment 
process. These profiles include social, physical, 
economic, and environmental profiles. All of these 
profiles can change over a certain period of time and 
cover various sectors, so that they are dynamic in 
nature and require a multidisciplinary approach. 

 
The provision of profile data can be done through 

a spatial data infrastructure (SDI) system. Asante et 
al. (2006) highlight the crucial role of SDI in supporting 
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natural disaster management through the integration 
of geospatial technology. This study suggests that the 
development of hazard and vulnerability baselines 
using historical data through SDI enables more 
effective planning efforts in dealing with various 
disaster scenarios. Therefore, this system needs to 
pay attention to design principles and data conditions 
which, in this context, support the dynamic nature of 
data. The form of SDI that can be implemented is a 
spatial database containing the profile of an area. 

 
Various studies show that database technology 

plays an important role in disaster information 
management. Databases can include models that 
spatially simulate the resilience of a region from 
various dimensions (Narieswari et al., 2022). 
Databases can also store measurement data from 
various sensors in real time or synchronized with other 
features (Nur Laily et al., 2023). A number of findings 
have proven that databases not only meet current 
needs but can also be used as a foundation for the 
development of more comprehensive disaster risk 
assessments based on future scenarios (Ward et al., 
2022). 

 
Despite these studies, data availability remains a 

major obstacle in disaster management in Indonesia. 
The current situation shows that spatial data is still 
fragmented and static. Disaster data is scattered 
across various agencies (BPS, BIG, PUPR, 
Disdukcapil, and local governments) and is not 
integrated (Barai et al., 2025). This condition is 
exacerbated by other problems, such as the 
incompleteness of directly accessible data, which 
necessitates the supplementation of one data set with 
another (Han and Liu, 2025), the lack of 
interoperability between data and communication 
media, and issues related to quality and scalability 
(Jailani, 2019). This hinders quick and accurate 
decision-making and creates an information gap. On 
the other hand, the need for improved quality, dynamic 
nature, and completeness of data is increasingly 

urgent to support early warning systems, resource 
planning, and infrastructure strengthening. 

 
Relational databases have long been used in 

Geographic Information Systems (GIS). However, 
their limitations in handling large, heterogeneous, and 
dynamic data pose challenges (Sveen, 2019). In 
contrast, non-relational database approaches 
(NoSQL), such as MongoDB, offer schema flexibility, 
scalability, and efficiency in spatial data storage, 
especially in GeoJSON format (Maia et al., 2018). The 
data structure, especially the spaghetti structure 
without topology, allows for simple yet effective 
storage for spatial integration needs, although it 
requires additional strategies for complex spatial 
analysis. Recent research has examined a conceptual 
design of a dynamic database for specific disaster 
cases, namely a multilevel dynamic database model 
specifically designed to support data management in 
remote sensing-based geological disaster emergency 
monitoring (Zhang et al., 2021). Database 
development can also be carried out with flexible 
adjustments while maintaining the clarity of the 
existing structure and standardization (Faiella et al., 
2022). This supports the importance of multi-source 
Jdata integration in a data warehouse with practical 
interpretations in the form of interactive dashboards to 
support rapid decision-making in disasters (Jailani, 
2019). This integration not only enables 
comprehensive spatial data representation but also 
provides synchronized access to users, thereby 
improving preparedness and mitigation. However, 
studies combining MongoDB as a dynamic spatial 
database with interactive WebGIS implementation for 
disaster profiles at the local level are still very limited. 

 
Based on these issues, this study focuses on 

optimizing dynamic spatial databases to support 
disaster studies. This approach is expected to 
improve the efficiency of data storage, updating, and 
cross-sector integration, thereby providing more 
adaptive and relevant risk profiles for policy makers 
and the community.

 

Fig. 1. Map of Lebak Regency
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2. Material and Methods 

2.1 Study Area 

As shown in Fig.1, this study focuses on Lebak 
Regency, Banten Province, with an area of 3,426 km². 
This regency was chosen because it has a high level 

of vulnerability to geological and hydrometeorological 
disasters. Based on the BPBD (2025) report, 
throughout 2024 there were 392 disaster events in 
Lebak, including floods, landslides, extreme weather, 
and coastal erosion, which had a significant impact on 
the community and infrastructure. It has 28 districts 
which each of them will be shown its spatial profile. 

 

 

Fig. 2. List of data used as test object

2.2 Data 

The data used is in the form of vector data 
representing the profile of the Lebak Regency area. 
This data serves as a test object for the research 
results. The data will be used to assess the 
performance of the results and control the algorithms 
running on the output. 

The data used was obtained from a number of 
sources. Geospatial data, which is vector data, was 
obtained from Indonesian Earth Appearance (RBI) 
data published by the Geospatial Information Agency. 
However, the semantic structure (attributes) of this 
data was simplified to include only the information 
necessary for spatial analysis of disaster risk as 
applied by the National Disaster Management Agency 
(BNPB) in the Indonesian Disaster Risk (RBI) 
document and the resulting technical modules for 
disaster risk assessment for various categories 

 
2.3 Method 

The research process began with identifying the 
needs for spatial analysis of disaster risk. The data 
was adjusted in terms of format and attributes. The 
data format used was GeoJSON, which is an 
encrypted and compressed vector spatial data format. 
Attribute adjustments were made roughly by replacing 
all attribute names according to the conceptual design 
that had been developed. 

In addition to data preparation, a database 
schema was also created using MongoDB. The 

database creation process was not carried out directly 
on MongoDB, but using a programming script in 
Python (the definition script is shown in the Appendix). 
After the definition was made, when all data had been 
adjusted, the data was entered into the MongoDB 
database using Python programming. This method is 
categorized as optional because it can be done 
directly by entering the data one by one. However, the 
process of entering with Python is done for efficiency 
in the data entry process. 

The database will be displayed in the form of a 
web-based data warehouse. The web design process 
consists of two parts: frontend design, which is the 
part that is directly used by users, and backend 
design, which is a series of processes that work 
behind the frontend. The frontend is designed using 
HTML for the main web framework, CSS for interface 
decoration, and JavaScript to run the functionality of 
all features on the frontend by connecting them to the 
backend. The backend is designed using Python, 
which contains algorithms for database definition, 
data entry, data display on the frontend, synchronized 
data updates, and downloading the latest data. The 
connection between the frontend and backend is 
made using an API defined in one of the main scripts 
located in the backend. The frontend features are 
activated using a server called Uvicorn, while the 
backend is activated in various ways, namely with 
Python or with the Live Server feature, an extension 
found in Visual Studio Code. 
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Fig. 3. Research flowchart 

 

 

3. Results and Discussion 3.1 Database Structure 
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Fig. 4. Entity relationship diagram of relational 
database structure 

Fig. 4 illustrates the data structure relationship 
depicted in an entity relationship diagram (ERD), 
focusing on the “AdministrativeBoundary” entity as 
the main entity whose profile is derived through 
relationships with other entities. The 
“AdministrativeBoundary” entity has attributes in the 
form of a subdistrict identity code (‘id_kec’), which is 
the entity's primary key, and additional information, 
namely the subdistrict name (‘nama_kec’) and 
subdistrict area (‘luas_wilayah’). The ‘id_kec’ 
attribute will be a foreign key for most other related 
entities. 

The profiles displayed refer to BNPB Regulation 
Number 2 of 2012, which is further elaborated in the 
Indonesian Disaster Risk (RBI) document and a 
number of technical modules on Indonesian disaster 
risk assessment. The profiles displayed include 
social, physical, economic, environmental, and 
topographical profiles. A number of these profiles can 
be used to define a region's exposure and 
vulnerability to disasters. 

The topography profile consists of contours and 
administrative boundaries per subdistrict so that the 
database can provide three-dimensional data and 
information related to the spatial aspects of Lebak 
Regency. The social profile consists of population 
density and the number of vulnerable groups. The 
physical profile is the distribution of infrastructure 
objects in a region, namely infrastructure and 
facilities. The economic profile is defined as the 
economic conditions of the region, focusing on the 
productivity of an area in relation to regional progress 
and development. The environmental profile consists 
of a number of non-productive lands. 

The Lebak Regency spatial disaster profile 
database was designed with reference to the 
Indonesian Disaster Risk module framework (BNPB). 
The main entity is the subdistrict administrative 
boundary, which is connected to derivative entities in 
the form of social, physical, economic, and 
environmental profiles. The referencing model in 
MongoDB was chosen because it is efficient for one-
to-many relationships with large data volumes and 
independent access. 

The social profile includes population density and 
vulnerable groups (age, disability, poverty, gender 

ratio). The physical profile consists of settlements, 
public facilities (education, health, worship), and 
critical facilities (telecommunications networks and 
resource infrastructure). Economic profiles display 
GRDP and the distribution of productive land (rice 
fields, gardens, ponds), while environmental profiles 
highlight non-productive land such as forests and 
swamps. This structure makes the database flexible 
to support multi-dimensional disaster analysis. 

3.2 Web Architecture Design 

 

Fig. 5. DBMS web architecture design 

The system architecture consists of a backend 
(FastAPI–Python) that manages the MongoDB 
database and API services, as well as a LeafletJS-
based frontend for interactive spatial visualization. 
The web dashboard allows users to display spatial 
profiles per subdistrict, classify numerical data 
(Natural Breaks/Jenks), view profile summaries, and 
access historical data archives. Data upload–
download features are provided to facilitate further 
utilization. 

The backend is the backbone of the system which 
is responsible for data management, algorithms, and 
interactions with the database. For data 
management, a non-relational database MongoDB 
was chosen for this research. MongoDB was 
selected based on its ability to handle spatial data 
efficiently, its flexible schema that allows for dynamic 
data adjustments, and its good scalability to 
accommodate future data growth. The use of 
MongoDB specifically supports the storage and 
analysis of spatial data through its geospatial 
features. The scripts for the backend were developed 
using Python so they utilize various relevant libraries 
for data manipulation, routing, and other supporting 
services. Functions handled by the backend are 
database management, routing requests from the 
frontend, data processing utilities, and API services 
for data interaction. 

The frontend consists of a web-based user 
interface that allows users to interact directly with the 
system. Using HTML, CSS, and JavaScript, this 
frontend presents information visually and 
interactively. The interface design focuses on ease of 
use with an intuitive map dashboard display and an 
organized spatial disaster profile data warehouse. 

 

 

 

 

 

 

3.3 DBMS Overview 
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Fig. 6. Interface of Spatial Disaster Profile DBMS 

The tangible manifestation of the database 
structure and web architecture design is a real 
website titled “Spatial Disaster Profile DBMS.” As a 
data warehouse, this system functions as a 
centralized repository for various types of profile data 
that determine disaster factors. It is important to 
emphasize that profile data, both spatial and tabular, 
has automatic updating capabilities (synchronized 
updating). This is a fundamental feature that makes 
this database “dynamic.” This updating mechanism 
will be explained further in data management. This 
capability eliminates the need for time-consuming 
and error-prone manual updates and ensures that 
analyses are always based on the latest data. In 
addition, the system is designed to allow users to 
download spatial data and profile table data. This 
feature is very important because it makes it easier 
for interested parties to conduct disaster analysis 
without the need for scraping from various sources. 
This reduces duplication of effort and increases the 
efficiency of the analysis process. 

 

Fig. 7. Demonstration of subdistrict’s profile brief 
summary 

The DBMS has a number of interface features 
that can be accessed by users. These features help 
users easily and quickly view the spatial profile 
details of an area. In this case, the area is each 
subdistrict in Lebak Regency, Banten. Figure 6 
shows a map and two sidebars: the main sidebar on 
the left side of the map and the statistics sidebar on 
the right side of the map. By default, the 
administrative boundaries of subdistricts in Lebak 
Regency are displayed with no fill and a black outline. 
Users can click on one of the administrative 
boundaries of the subdistricts in Lebak Regency to 
see a brief summary of the subdistrict profile at the 
bottom of the left sidebar, as seen in Figure 7. This 
maximizes the effectiveness and efficiency of viewing 
a subdistrict profile, but it is not possible to view 
everything at once, so to view the profile of a regency, 

further analysis using the data provided in the DBMS 
is required. 

 

Fig. 8. Layer selection and other menu (data upload 
and download) 

In addition to viewing a summary of a subdistrict's 
profile, the left sidebar contains a number of tools for 
viewing simultaneous data updates (synchronized 
data updating), options for displaying the spatial 
profile layer of a regency, and a number of tools for 
downloading and uploading data. The profile viewing 
feature is a tick button that displays the profile 
spatially with its classifications. When users display 
the profile, the frontend functionality also classifies 
the data. The classification performed is numerical 
classification. Additional information on the 
classification results can be seen in the legend, which 
dynamically adjusts to the profile displayed. For 
numerical classification, the classification method 
used is natural break (Jenks) because it is able to 
adjust to various types of data. The legend is located 
at the bottom right of the map. 

 

Fig. 9. Statistic summary 

In this DBMS, there is a special page that allows 
users to access historical data. On the left sidebar, 
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there is a menu to access the ‘Historical Data 
Archive’ page. Users will be redirected to the 
Historical Data Archive page, where they can specify 
the desired data date. A set of historical data is stored 
in a snapshot, which is a collection of data for each 
spatial and non-spatial profile. 

The Spatial Disaster Profile DBMS was 
developed as a dynamic system that provides raw 
data and visualizations of disaster-determining 
factors without performing direct risk calculations, 
thus giving users the flexibility to apply risk analysis 
methodologies as needed. The core of this system is 
an automatic update mechanism through API 
integration simulation from primary data sources 
(e.g., BPS or local government agencies), which 
enables continuous data updates without manual 
intervention. MongoDB was chosen as the main 
engine due to its schema flexibility, which allows for 
the addition or modification of new data without 
complex migration, as well as its support for 
horizontal scalability through sharding, ensuring 
stable performance even as data volume and users 
increase. The flexible database design allows for 
gradual cross-sector integration, while support for 
GeoJSON spatial data storage and 2dsphere 
geospatial indexes enables fast execution of spatial 
queries such as proximity search, geoWithin, and 
intersection. Tests show that MongoDB is capable of 
handling periodic profile data updates without a 
significant decrease in dashboard response time, 
making this system not only adaptive and efficient, 
but also has the potential to be adopted on a regional 
and national scale. 

3.4 Spatial Query Performance 

 

Fig. 10. Spatial query speed results between 
MongoDB and PostGIS 

Performance testing of spatial queries on 
identical datasets in MongoDB and 
PostgreSQL/PostGIS shows that the two have 
different characteristics. In the point-in-polygon test, 
both are relatively equal with an execution time of 
78.07 ms in MongoDB and 79.95 ms in PostGIS, 

while in the radius search test, MongoDB is much 
faster, at 1.96 ms compared to 154.75 ms in PostGIS, 
thanks to efficient 2dsphere index optimization for 
proximity searches. Because of these findings, 
MongoDB is better suited for emergency response 
scenarios involving disasters that call for a prompt 
reaction, like looking for vital facilities or weak spots 
nearby an incident. In the bounding box search test, 
MongoDB also outperformed PostGIS (18.50 ms vs. 
25.85 ms), supporting the loading of map view-based 
data on interactive dashboards. 

3.5 Flexibility Performance 

 

Fig. 11. Example of data with different attributes in a 
single data collection in MongoDB 

This study highlights data integrity management 
through thorough backend validation before data is 
entered or updated, covering structure, format, 
completeness, and value suitability, despite 
MongoDB's reputation as a flexible non-relational 
database. This feature prevents data corruption and 
inconsistency. In addition, MongoDB also supports 
2dsphere spatial indexes to ensure the accuracy of 
spatial queries such as geoWithin, near, and 
intersect, while maintaining geographic data integrity. 
However, to demonstrate MongoDB's adaptability to 
changing standards or new data types, a dummy 
collection comprising documents with different 
attributes such as operational hour time 
(jam_operasional) as a string or capacity as an 
integer was created. Although PostGIS is still better 
for complex spatial analysis like buffering, overlay, 
and network analysis, MongoDB's role in supporting 
dynamic disaster spatial profiling systems is 
strengthened by this flexibility and quick spatial query 
performance. Consequently, a hybrid strategy that 
uses PostGIS for sophisticated spatial analysis and 
MongoDB for dynamic queries may be the best 
course of action. 

 



 
Haviz et al.,/ JAGI Vol 9 No 2/2025 87 

 

 
(a) 

 
 

(b) 
Fig. 12. Structures of raster data storage in 

MongoDB: (a) in chunks and (b) in a single file 

In order to evaluate frontend access and storage 
capacity, raster data was converted from vector 
contour data to MongoDB. The results of the study 
show that although Digital Elevation Model (DEM) 
rasters can be stored well using the GridFS 
mechanism and integrated with the backend, the 
process of direct visualization to a web-based map 
(Leaflet) is unable to display an accurate 
representation of the Earth's surface due to 
fundamental differences between the raster storage 
structure in the database and the spatial visualization 
requirements on the frontend. Rasters from GridFS 
can only be converted into simple images in the form 
of 256×256 pixel PNG tiles through resampling, 
which reduces the resolution and eliminates 
topographical details. Thus, MongoDB is effective as 
a raster storage repository, but it is not designed to 
support direct visualization, so DEM raster 
presentation is more appropriately done through a 
dedicated tile server such as GeoServer or Cloud 
Optimized GeoTIFF (COG). 

3.6 Implementation 

Spatial Disaster Profile DBMS in Lebak Regency 
is expected to have a significant impact on disaster 
risk management and response through improved 
analysis efficiency, strengthened data-driven 
decision making, and resource optimization. The 
system that integrates various up-to-date spatial and 
non-spatial data into a single platform might help 
stakeholders reducing data collection time, avoiding 
duplication, and focusing more on evidence-based 
mitigation strategies. Interactive visualizations in the 
form of dynamic maps and attribute tables enable a 
better understanding of exposure patterns for 
vulnerability assessment, while the availability of 
valid data encourages cross-sector collaboration 
between local governments, academics, 
communities, and non-governmental organizations. 

In terms of performance, MongoDB with 
2dsphere spatial index support has been proven to 
improve the performance of spatial query processing 
such as point-in-polygon and proximity search, 
enabling the system to respond quickly to large data 
volumes and intensive updates. However, the system 
still has limitations: the implemented profile only 
complies with BNPB Head Regulation No. 2/2012, 
without an automatic risk analysis module; 
dependence on public APIs that are not yet uniform; 
and the need for manual supervision when data 
integration is not fully available. This system is 
therefore positioned as a valid and dynamic data 
repository, while risk analysis is still carried out 
externally. 

Going forward, development can be directed 
towards integrating an automatic risk analysis 
module, adding advanced spatial analysis features 
(overlay, clustering, temporal modeling), and 
integrating real-time data from IoT sensors to enrich 
monitoring functions. From an infrastructure 
perspective, implementation on a public cloud server 
will expand accessibility and support the principle of 
open data, while mobile applications can strengthen 
field monitoring and rapid response in limited areas. 
The use of managed database services such as 
AWS or Alibaba Cloud is also recommended to 
ensure system scalability, security, and reliability. 
Thus, the Spatial Disaster Profile DBMS has a strong 
foundation as an adaptive, collaborative, and 
sustainable digital ecosystem in supporting data-
based disaster risk management in Indonesia. 

 

4. Conclusion  

This research successfully developed a web-
based dynamic spatial disaster profile database 
system with a case study in Lebak Regency, which 
integrates spatial and non-spatial data (topography, 
social, physical, economic, and environmental) into a 
centralized platform with automatic updates through 
API integration. By utilizing MongoDB as a flexible, 
scalable, and efficient non-relational database for 
geospatial processing, this system is designed based 
on the “AdministrativeBoundary” entity to support 
visualization, structured storage, and comprehensive 
spatial disaster analysis. Performance tests reveal 
that MongoDB outperforms PostgreSQL/PostGIS in 
a number of spatial queries; however, PostGIS is 
generally more potent, and MongoDB's adaptability 
to handling a variety of data types is still a benefit. 
Through a combination of automation and manual 
supervision, this system overcomes the limitations of 
the API, exhibiting flexibility in real-world scenarios 
while enhancing data accessibility, analysis 
efficiency, and cross-sector collaboration. It is 
advised that future development incorporate 
automated risk analysis modules, advanced spatial 
features (overlay, clustering), IoT sensor integration, 
and integration with public cloud infrastructure to 
guarantee data security, availability, and openness. 
The system's scalability, dependability, and 
sustainability as a long-term spatial disaster data 
infrastructure will also be strengthened by technical 
training, institutional cooperation with data providers, 
and the use of managed database services 
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