Kajian Perubahan Struktur Kristal dan Konduktivitas Listrik Akibat Penambahan Variasi Dopan pada Bahan ZrO2

  • Budiana Budiana Politeknik Negeri Batam
  • F. Fitriana Institut Teknologi Sepuluh November
  • Nadhrah Wivanius Politeknik Negeri Batam
  • Widya Rika Puspita Politeknik Negeri Batam
  • Fitriyanti Nakul Politeknik Negeri Batam
Keywords: Cubik, monoklinik, Vesta, Structure, Tetragonal


ZrO2 merupakan bahan keramik yang memiliki banyak struktur (Polimorpi). Struktur yang dimiliki oleh ZrO2 terdiri dari struktur monoklinik yang stabil pada temperatur ruang, tetragonal dan kubik. Metode penelitian pada penulisan jurnal ini menggunakan teknik review dari beberapa peneliti yang telah melakukan kajian secara intensif dengan berbagai variasi metode yang telah dilakukan. Selain dari itu, penyusunan jurnal ini dilengkapi dengan penggunaan software Vesta yang terintegrasi dengan data-data kristalografi yang tersedia pada laman crystallography.net/cod/ sehigga dapat memberikan simulasi atas pemberian dopan yang diberikan pada ZrO2. Berdasarkan kajian yang telah dilakukan, penambahan variasi dopan  yang diberikan pada ZrO2 mengakibatkan ZrO2 kubik dan tetragonal stabil pada temperatur ruang dan terjadi perubahan nilai konduktivitas listrik akibat adanya kehadiran vakansi oksigen yang terbentuk dari adanya pemberian dopan yang diberkan.  Perubahan nilai konduktivitas listrik tergantung dari jenis dan konsentrasi dopan yang diberikan.


Download data is not yet available.


D. Eliche-Quesada, L. Pérez-Villarejo, and P. Sánchez-Soto, “Introduction to Ceramic Mate-rials: Synthesis, Characterization, Applications, and Recycling,” 2019.

A. Cheikh, A. Madani, A. Touati, H. Bous-setta, and C. Monty, “Ionic Conductivity of Zirco-nia Based Ceramics from Single Crystals to Nanostructured Polycrystals,” J. Eur. Ceram. Soc., vol. 21, pp. 1837–1841, Dec. 2001.

S. Kulkov, S. Buyakova, and L. Gömze, “Structure and mechanical properties of ZrO2-based systems,” Epitoanyag - J. Silic. Based Compos. Mater., vol. 66, pp. 2–6, Jan. 2014.

W. Shao, “Research and Application of En-gineering Ceramic Material Processing Technolo-gy,” IOP Conf. Ser. Mater. Sci. Eng., vol. 394, p. 032030, Aug. 2018.

V. Viswanathan, G. Dwivedi, and S. Sam-path, “Multilayer, Multimaterial Thermal Barrier Coating Systems: Design, Synthesis, and Per-formance Assessment,” J. Am. Ceram. Soc., vol. 98, no. 6, pp. 1769–1777, 2015.

X. Luo, B. Guo, X. Wang, and Z. Zhang, “Development Trend of Low Thermal Conductivity Ceramic Materials,” IOP Conf. Ser. Mater. Sci. Eng., vol. 735, p. 012019, Jan. 2020.

A. E. Pramono, M. Z. Nura, J. W. M. Soedarsono, and N. Indayaningsih, “Effect of sintering temperature on the relationship of elec-trical conductivity and porosity characteristics of carbon ceramic composites,” J. Ceram. Process. Res., vol. 20, no. 4, pp. 333–346, Aug. 2019.

W. Wong-Ng, R. S. Roth, T. A. Vanderah, and H. F. McMurdie, “Phase Equilibria and Crys-tallography of Ceramic Oxides,” J. Res. Natl. Inst. Stand. Technol., vol. 106, no. 6, pp. 1097–1134, 2001.

G. Burns and A. M. Glazer, Eds., “Appendix 2 - Crystal Families, Systems, and Bravais Lat-tices,” in Space Groups for Solid State Scientists (Third Edition), Oxford: Academic Press, 2013, pp. 319–320.

G. Burns and A. M. Glazer, “Chapter 3 - Bra-vais Lattices,” in Space Groups for Solid State Scientists (Third Edition), G. Burns and A. M. Glazer, Eds. Oxford: Academic Press, 2013, pp. 45–64.

X. Shen et al., “Interlaced crystals having a perfect Bravais lattice and complex chemical order revealed by real-space crystallography,” Nat. Commun., vol. 5, no. 1, pp. 1–6, Nov. 2014.

L. Cai and J. C. Nino, “Complex ceramic structures. I. Weberites,” Acta Crystallogr. B, vol. 65, no. 3, pp. 269–290, Jun. 2009.

P. F. Manicone, P. Rossi Iommetti, and L. Raffaelli, “An overview of zirconia ceramics: basic properties and clinical applications,” J. Dent., vol. 35, no. 11, pp. 819–826, Nov. 2007.

S. Thomas, P. Balakrishnan, and M. S. Sreekala, Fundamental Biomaterials: Ceramics. Woodhead Publishing, 2018.

S. Saridag, O. Tak, and G. Alniacik, “Basic properties and types of zirconia: An overview,” World J. Stomatol., vol. 2, no. 3, pp. 40–47, Aug. 2013.

S.-J. Hao, C. Wang, T.-L. Liu, Z.-M. Mao, Z.-Q. Mao, and J.-L. Wang, “Fabrication of na-noscale yttria stabilized zirconia for solid oxide fuel cell,” Int. J. Hydrog. Energy, vol. 42, no. 50, pp. 29949–29959, Dec. 2017.

S. Ji et al., “Fabrication of low-temperature solid oxide fuel cells with a nanothin protective layer by atomic layer deposition,” Nanoscale Res. Lett., vol. 8, no. 1, p. 48, Jan. 2013.

B. Budiana, F. Fitriana, N. Ayu, and S. Suasmoro, “Preparation and conductivity meas-urement of 7-8 mol % YSZ and 12 mol % CSZ for electrolyte SOFC,” J. Phys. Conf. Ser., vol. 739, p. 012022, Aug. 2016.

I. Denry and J. R. Kelly, “State of the art of zirconia for dental applications,” Dent. Mater., vol. 24, no. 3, pp. 299–307, Mar. 2008.

J. Grech and E. Antunes, “Zirconia in dental prosthetics: A literature review,” J. Mater. Res. Technol., vol. 8, no. 5, pp. 4956–4964, Sep. 2019,.

S. A. Fowziya et al., “Dielectric Studies of ZrO2 Semiconducting Oxide Materials and its Characterization,” Nano Trends- J. Nano Technol. Its Appl., vol. 20, no. 2, pp. 26–35, Aug. 2018.

M. Y. Al-Daraghmeh, M. T. Hayajneh, M. A. Almomani, M. Y. Al-Daraghmeh, M. T. Hayajneh, and M. A. Almomani, “Corrosion Resistance of TiO2-ZrO2 Nanocomposite Thin Films Spin Coat-ed on AISI 304 Stainless Steel in 3.5 wt. % NaCl Solution,” Mater. Res., vol. 22, no. 5, 2019.

W. Zhang, G. Ji, A. Bu, and B. Zhang, “Cor-rosion and Tribological Behavior of ZrO2 Films Prepared on Stainless Steel Surface by the Sol–Gel Method,” ACS Appl. Mater. Interfaces, vol. 7, no. 51, pp. 28264–28272, Dec. 2015.

B. Budiana and S. Suasmoro, “Pelapisan Yttria Stabilized Zirconia Dan Calcia Stabilized Zirconia Pada Baja S45c Dengan Teknik Flame Spray Coating,” J. Sains Materi Indones., vol. 15, no. 1, pp. 18–23, Oct. 2013.

D. S. Fuji Octa Indah Suciati, “Sintesis Dan Karakterisasi Zirkonium Dioksida Untuk Digunakan Sebagai Matrik Kolom Generator Ra-dioisotop 113sn -113mIn,” GANENDRA Maj. IPTEK Nukl., vol. 20, no. 1, p. 41, Apr. 2017.

C. PHILLIPPI and K. MAZDIYASNI, “Infrared and Raman Spectra of ZrO2 Polymorphs,” J. Am. Ceram. Soc., vol. 54, pp. 254–258, Jun. 2006.

Neetu, D. Singh, N. Kumar, and J. Gangwar, “Comparative study of crystallographic represen-tation on the three ZrO2 polymorphs: structural models, lattice planes, model electron and nu-clear densities,” Mater. Res. Express, vol. 6, no. 11, p. 1150f8, Nov. 2019.

F. Qunbo, W. Fuchi, Z. Huiling, and Z. Feng, “Study of ZrO2 phase structure and elec-tronic properties,” Mol. Simul., vol. 34, no. 10–15, pp. 1099–1103, Sep. 2008.

“Crystallography Open Database.” [Online]. Available: http://www.crystallography.net/cod/. [Accessed: 13-Mar-2020].

M. Quirós, S. Gražulis, S. Girdzijauskaitė, A. Merkys, and A. Vaitkus, “Using SMILES strings for the description of chemical connectivity in the Crystallography Open Database,” J. Cheminfor-matics, vol. 10, no. 1, p. 23, May 2018,

“Merkys, A., Vaitkus, A., Butkus, J., Okulič-Kazarinas, M., Kairys, V. & Gražulis, S. (2016) ‘COD::CIF::Parser: an error-correcting CIF parser for the Perl language’. Journal of Applied Crys-tallography -

S. Gražulis, A. Merkys, A. Vaitkus, and M. Okulič-Kazarinas, “Computing stoichiometric mo-lecular composition from crystal structures,” J. Appl. Crystallogr., vol. 48, no. Pt 1, pp. 85–91, Jan. 2015.

S. Gražulis et al., “Crystallography Open Database – an open-access collection of crystal structures,” J. Appl. Crystallogr., vol. 42, no. Pt 4, pp. 726–729, Aug. 2009.

R. T. Downs and M. Hall-Wallace, “The American Mineralogist crystal structure data-base,” Am. Mineral., vol. 88, no. 1, pp. 247–250, Jan. 2003.

S. Gražulis et al., “Crystallography Open Database (COD): an open-access collection of crystal structures and platform for world-wide collaboration,” Nucleic Acids Res., vol. 40, no. Database issue, pp. D420–D427, Jan. 2012.

A. Le Bail, “Inorganic structure prediction with GRINSP,” J. Appl. Crystallogr., vol. 38, no. 2, pp. 389–395, Apr. 2005.

K. Momma and F. Izumi, “VESTA 3 for three-dimensional visualization of crystal, volu-metric and morphology data,” J. Appl. Crystal-logr., vol. 44, no. 6, pp. 1272–1276, Dec. 2011.

R. Terki, G. Bertrand, H. Aourag, and C. Coddet, “Structural and electronic properties of zirconia phases: A FP-LAPW investigations,” Ma-ter. Sci. Semicond. Process., vol. 9, pp. 1006–1013, Dec. 2006.

D. Vollath, F. Fischer, M. Hagelstein, and D. V. Szabó, “Phases and Phase Transformations in Nanocrystalline ZrO2,” J. Nanoparticle Res., vol. 8, pp. 1003–1016, Dec. 2006.

M. H. Bocanegra-Bernal and S. D. de la Tor-re, “Phase transitions in zirconium dioxide and related materials for high performance engineer-ing ceramics,” J. Mater. Sci., vol. 37, no. 23, pp. 4947–4971, Dec. 2002.

P. Pramanik et al., “Cubic phase stability, optical and magnetic properties of Cu-stabilized zirconia nanocrystals,” J. Phys. Appl. Phys., vol. 51, no. 22, p. 225304, May 2018.

C. B. Carter and M. G. Norton, Ceramic Ma-terials: Science and Engineering, 2nd ed. New York: Springer-Verlag, 2013.

Y. L. Bruni, L. B. Garrido, and E. F. Aglietti, “Properties of CaO-ZrO2 Based Composites,” Procedia Mater. Sci., vol. 8, pp. 203–210, Jan. 2015.

S. M. Shugurov, O. Y. Kurapova, S. I. Lopatin, V. G. Konakov, and E. A. Vasil’eva, “Thermodynamic properties of the La2O3–ZrO2 system by Knudsen effusion mass spectrometry at high temperature,” Rapid Commun. Mass Spec-trom., vol. 31, no. 23, pp. 2021–2029, 2017.

G. Baldinozzi, J. F. Bérar, and G. Calvarin-Amiri, “Rietveld Refinement of Two-Phase Zr-Doped Y2O3,” Materials Science Forum, 1998. [Online]. Available: /MSF.278-281.680. [Ac-cessed: 13-Mar-2020].

D. Tian et al., “Performance of cubic ZrO2 doped CeO2: First-principles investigation on elastic, electronic and optical properties of Ce1−x ZrxO2,” J. Alloys Compd., vol. 671, pp. 208–219, Jun. 2016.

J. G. Mahy et al., “Ambient temperature ZrO2-doped TiO2 crystalline photocatalysts: Highly efficient powders and films for water de-pollution,” Mater. Today Energy, vol. 13, pp. 312–322, Sep. 2019.

V. G. Zavodinsky, “The mechanism of ionic conductivity in stabilized cubic zirconia,” Phys. Solid State, vol. 46, no. 3, pp. 453–457, Mar. 2004.

W. D. Callister and D. G. Rethwisch, Materi-als science and engineering: an introduction. 2014.

O. H. Kwon et al., “Investigation of the elec-trical conductivity of sintered monoclinic zirconia (ZrO2),” Ceram. Int., vol. 43, no. 11, pp. 8236–8245, Aug. 2017.

F. Rahmawati, I. Permadani, D. Syarif, and S. Soepriyanto, “Electrical Properties of Various Composition of Yttrium Doped-Zirconia Prepared from Local Zircon Sand,” Int. J. Technol., vol. 8, p. 939, Oct. 2017.

R. Bensaha and H. Bensouyad, “Synthesis, Characterization and Properties of Zirconium Ox-ide (ZrO2)-Doped Titanium Oxide (TiO2) Thin Films Obtained via Sol-Gel Process,” Heat Treat. - Conv. Nov. Appl., Sep. 2012.

J. H. Lee, S. Yoon, B. Kim, H. Lee, and H. Song, “Electrical conductivity and defect struc-ture of CeO2-ZrO2 mixed oxide,” J. Mater. Sci., vol. 37, pp. 1165–1171, Mar. 2002.